द्विघात समीकरण
प्रश्न 1.
जाँच कीजिए कि क्या निम्न द्विघात समीकरण हैं :
(i) (x + 1)2 = 2(x – 3)
(ii) x2 – 2x = (-2)(3 – x)
(iii) (x – 2)(x + 1) = (x – 1) (x + 3)
(iv) (x – 3) (2x + 1) = x(x + 5)
(v) (2x – 1)(x – 3) = (x + 5)(x – 1)
(vi) x2 + 3x + 1 = (x – 2)2
(vii) (x + 2)3 = 2x(x2 – 1)
(viii) x3 – 4x2 – x + 1 = (x – 2)3
हल
(i) दिया गया समीकरण :
(x + 1)2 = 2(x – 3)
⇒ x2 + 2x + 1 = 2(x – 3) [∵ (a + b)2 = a2 + 2ab + b2]
⇒ x2 + 2x + 1 = 2x – 6 [दाएँ पक्ष को सरल करने पर ]
⇒ x2 + 2x + 1 – 2x + 6 = 0 [पक्षान्तरण से]
⇒ x2 + 7 = 0
उक्त समीकरण में चर x की अधिकतम घात 2 है।
अत: दिया गया समीकरण द्विघात समीकरण है।
(ii) दिया गया समीकरण :
x2 – 2x = (-2)(3 – x)
⇒ x2 – 2x = -6 + 2x [सरल करने पर]
⇒ x2 – 2x – 2x + 6 = 0 [पक्षान्तरण से]
⇒ x2 – 4x + 6 = 0
उक्त समीकरण में चर x की अधिकतम घात 2 है।
अत: दिया गया समीकरण द्विघात समीकरण है।
(iii) दिया गया समीकरण :
(x – 2) (x + 1) = (x – 1) (x + 3)
⇒ x(x + 1) – 2(x + 1) = x(x + 3) – 1(x + 3) [सरल करने पर]
⇒ x2 + x – 2x – 2 = x2 + 3x – x – 3
⇒ x2 – x – 2 = x2 + 2x – 3
⇒ x2 – x – 2 – x2 – 2x + 3 = 0 [पक्षान्तरण से]
⇒ -3x + 1 = 0 [सरल करने पर]
उक्त समीकरण में चर x की अधिकतम घात 2 नहीं है।
अतः दिया गया समीकरण द्विघात समीकरण नहीं है।
(iv) दिया गया समीकरण :
(x – 3) (2x + 1) = x(x + 5)
⇒ x(2x + 1) – 3(2x + 1) = x(x + 5) [सरल करने पर]
⇒ 2x2 + x – 6x – 3 = x2 + 5x [सरल करने पर]
⇒ 2x2 + x – 6x – 3 – x2 – 5x = 0 [पक्षान्तरण से]
⇒ x2 – 10x – 3 = 0 [सरल करने पर]
उक्त समीकरण में चर x की अधिकतम घात 2 है।
अत: दिया गया समीकरण द्विघात समीकरण है।
(v) दिया गया समीकरण :
(2x – 1) (x – 3) = (x + 5) (x – 1)
⇒ 2x(x – 3) – 1(x – 3) = x(x – 1) + 5(x – 1) [सरल करने पर]
⇒ 2x2 – 6x – 1x + 3 = x2 – 1x + 5x – 5 [सरल करने पर]
⇒ 2x2 – 7x + 3 = x2 +4x – 5
⇒ 2x2 – 7x + 3 – x2 – 4x + 5 = 0 [पक्षान्तरण से]
⇒ x2 – 11x + 8 = 0
उक्त समीकरण में चर x की अधिकतम घात 2 है।
अत: दिया गया समीकरण द्विघात समीकरण है।
(vi) दिया गया समीकरण :
x2 + 3x + 1 = (x – 2)2
⇒ x2 + 3x + 1 = x2 – 4x + 4 [∵ (a – b)2 = a2 – 2ab + b2]
⇒ x2 + 3x + 1 – x2 + 4x – 4 = 0 [पक्षान्तरण से]
⇒ 3x + 1 + 4x – 4 = 0 [सरल करने पर]
⇒ 7x – 3 = 0
उक्त समीकरण में चर x की अधिकतम घात 2 नहीं है।
अत: दिया गया समीकरण द्विघात समीकरण नहीं है।
(vii) दिया गया समीकरण :
(x + 2)3 = 2x(x2 – 1)
⇒ x3 + (2)3 + 3 × x × 2(x + 2) = 2x(x2 – 1) [∵ (a + b)3 = a3 + b3 + 3ab(a + b)]
⇒ x3 + 8 + 6x2 + 12x = 2x3 – 2x [सरल करने पर]
⇒ x3 + 8 + 6x2 + 12x – 2x3 + 2x = 0 [पक्षान्तरण से]
⇒ -x3 + 6x2 + 14x + 8 = 0 [सरल करने पर]
उक्त समीकरण में चर x की अधिकतम घात 2 नहीं है।
अतः दिया गया समीकरण द्विघात समीकरण नहीं है।
(viii) दिया गया समीकरण :
x3 – 4x2 – x + 1 = (x – 2)3
⇒ x3 – 4x2 – x + 1 = x3 – (2)3 – 3 × x × 2(x – 2) [∵ (a – b)3 = a3 – b3 – 3ab(a – b)]
⇒ x3 – 4x2 – x + 1 = x3 – 8 – 6x(x – 2) [सरल करने पर]
⇒ x3 – 4x2 – x + 1 = x3 – 8 – 6x2 + 12x [सरल करने पर]
⇒ x3 – 4x2 – x + 1 – x3 + 8 + 6x2 – 12x = 0 [पक्षान्तरण से]
⇒ 2x2 – 13x + 9 = 0
उक्त समीकरण में चर x की अधिकतम घात 2 है।
अत: दिया गया समीकरण द्विघात समीकरण है।
प्रश्न 2.
निम्न स्थितियों को द्विघात समीकरणों के रूप में निरूपित कीजिए :
(i) एक आयताकार भूखण्ड का क्षेत्रफल 528 मीटर है। क्षेत्र की लम्बाई (मीटरों में) चौड़ाई के दुगुने से एक अधिक है। हमें भूखण्ड की लम्बाई और चौड़ाई ज्ञात करनी है।
(ii) दो क्रमागत धनात्मक पूर्णांकों का गुणनफल 306 है। हमें पूर्णांकों को ज्ञात करना है।
(iii) रोहन की माँ उससे 26 वर्ष बड़ी है। उनकी आयु (वर्षों में) का गुणनफल अब से तीन वर्ष पश्चात् 360 हो जाएगा। हमें रोहन की वर्तमान आयु ज्ञात करनी है।
(iv) एक रेलगाड़ी 480 km की दूरी समान चाल से तय करती है। यदि इसकी चाल 8 km/h कम होती, तो वह उसी दूरी को तय करने में 3 घंटे अधिक लेती। हमें रेलगाड़ी की चाल ज्ञात करनी है।
हल
(i) माना भूखण्ड की चौड़ाई x मीटर है।
प्रश्नानुसार, भूखण्ड की लम्बाई, उसकी चौड़ाई के दोगुने से 1 मीटर अधिक है।
भूखण्ड की लम्बाई = (2 × चौड़ाई) + 1
= (2 × x) + 1
= (2x + 1) मीटर
आयताकार भूखण्ड का क्षेत्रफल = लम्बाई × चौड़ाई
भूखण्ड का क्षेत्रफल = (2x + 1) × (x) वर्ग मीटर = (2x2 + x) वर्ग मीटर
परन्तु भूखण्ड का क्षेत्रफल = 528 वर्ग मीटर
2x2 + x = 528
⇒ 2x2 + x – 528 = 0
अत: अभीष्ट द्विघात समीकरण : 2x2 + x – 528 = 0
(ii) माना पहला धन पूर्णांक =x तथा दूसरा क्रमागत धन पूर्णांक = (x + 1)
पूर्णांकों का गुणनफल = x(x + 1) = x2 + x
परन्तु पूर्णांकों का गुणनफल = 306
x2 + x = 306
⇒ x2 + x – 306 = 0
अत: अभीष्ट द्विघात समीकरण : x2 + x – 306 = 0
(iii) माना रोहन की वर्तमान आयु = x वर्ष
उसकी माँ रोहन से 26 वर्ष बड़ी है।
रोहन की माँ की वर्तमान आयु = (x + 26) वर्ष
तीन वर्ष बाद, रोहन की आयु (x + 3) वर्ष तथा उसकी माँ की आयु (x + 26 + 3) या (x + 29) वर्ष हो जाएगी।
रोहन और उसकी माँ की आयु का गुणनफल = (x + 3) (x + 29)
= x(x + 29) + 3(x + 29)
= x2 + 29x + 3x + 87
= x2 + 32x + 87
प्रश्नानुसार, आयु का गुणनफल = 360
x2 + 32x + 87 = 360
⇒ x2 + 32x + 87 – 360 = 0
⇒ x2 + 32x – 273 = 0
अत: अभीष्ट द्विघात समीकरण : x2 + 32x – 273 = 0
(iv) माना रेलगाड़ी की चाल x km/h है।
निर्धारित दूरी = 480 km
रेलगाड़ी को 460 km दूरी तय करने में लगने वाला समय = 480x घंटे
यदि रेलगाड़ी की चाल 8 km/h कम होती तब रेलगाड़ी की चाल = (x – 8) km/h
रेलगाड़ी को 480 km दूरी चलने में लगा समय = 480x−8 घंटे।
⇒ 3x2 – 24x = 3840 [वज्रगुणन से]
⇒ 3x2 – 24x – 3840 = 0 [पक्षान्तरण से]
⇒ 3(x2 – 8x – 1280) = 0 [3 सार्व लेने पर ]
⇒ x2 – 8x – 1280 = 0 [दोनों पक्षों में 3 से भाग देने पर]
अत: अभीष्ट द्विघात समीकरण : x2 – 8x – 1280 = 0
You must watch….
Chapter 1 वास्तविक संख्याएँ
Chapter 1 वास्तविक संख्याएँ Ex 1.1
Chapter 1 वास्तविक संख्याएँ Ex 1.2
Chapter 1 वास्तविक संख्याएँ Ex 1.3
Chapter 1 वास्तविक संख्याएँ Ex 1.4
Chapter 1 वास्तविक संख्याएँ Additional Questions
Chapter 2 बहुपद
Chapter 2 बहुपद Ex 2.1
Chapter 2 बहुपद Ex 2.2
Chapter 2 बहुपद Ex 2.3
Chapter 2 बहुपद Ex 2.4
Chapter 2 बहुपद Additional Questions
Chapter 3 दो चरों वाले रैखिक समीकरण युग्म
Chapter 3 दो चरों वाले रैखिक समीकरण युग्म Ex 3.1
Chapter 3 दो चरों वाले रैखिक समीकरण युग्म Ex 3.2
Chapter 3 दो चरों वाले रैखिक समीकरण युग्म Ex 3.3
Chapter 3 दो चरों वाले रैखिक समीकरण युग्म Ex 3.4
Chapter 3 दो चरों वाले रैखिक समीकरण युग्म Ex 3.5
Chapter 3 दो चरों वाले रैखिक समीकरण युग्म Ex 3.6
Chapter 3 दो चरों वाले रैखिक समीकरण युग्म Ex 3.7
Chapter 3 दो चरों वाले रैखिक समीकरण युग्म Additional Questions
Chapter 4 द्विघात समीकरण
Chapter 4 द्विघात समीकरण Ex 4.2
Chapter 4 द्विघात समीकरण Ex 4.3
Chapter 4 द्विघात समीकरण Ex 4.4
Chapter 4 द्विघात समीकरण Additional Questions
Chapter 5 समांतर श्रेढ़ियाँ
Chapter 5 समांतर श्रेढ़ियाँ Ex 5.1
Chapter 5 समांतर श्रेढ़ियाँ Ex 5.2
Chapter 5 समांतर श्रेढ़ियाँ Ex 5.3
Chapter 5 समांतर श्रेढ़ियाँ Ex 5.4
Chapter 5 समान्तर श्रेढ़ियाँ Additional Questions
Chapter 6 त्रिभुज
Chapter 6 त्रिभुज Ex 6.1
Chapter 6 त्रिभुज Ex 6.2
Chapter 6 त्रिभुज Ex 6.3
Chapter 6 त्रिभुज Ex 6.4
Chapter 6 त्रिभुज Ex 6.5
Chapter 6 त्रिभुज Ex 6.6
Chapter 6 त्रिभुज Additional Questions
Chapter 7 निर्देशांक ज्यामिति
Chapter 7 निर्देशांक ज्यामिति Ex 7.1
Chapter 7 निर्देशांक ज्यामिति Ex 7.2
Chapter 7 निर्देशांक ज्यामिति Ex 7.3
Chapter 7 निर्देशांक ज्यामिति Ex 7.4
Chapter 7 निर्देशांक ज्यामिति Additional Questions
Chapter 8 त्रिकोणमिति का परिचय
Chapter 8 त्रिकोणमिति का परिचय Ex 8.1
Chapter 8 त्रिकोणमिति का परिचय Ex 8.2
Chapter 8 त्रिकोणमिति का परिचय Ex 8.3
Chapter 8 त्रिकोणमिति का परिचय Ex 8.4
Chapter 8 त्रिकोणमिति का परिचय Additional Questions
Chapter 9 त्रिकोणमिति के कुछ अनुप्रयोग
Chapter 9 त्रिकोणमिति के कुछ अनुप्रयोग Ex 9.1
Chapter 9 त्रिकोणमिति के कुछ अनुप्रयोग Additional Questions
Chapter 10 वृत्त
Chapter 10 वृत्त Ex 10.1
Chapter 10 वृत्त Ex 10.2
Chapter 10 वृत्त Additional Questions
Chapter 11 रचनाएँ
Chapter 11 रचनाएँ Ex 11.1
Chapter 11 रचनाएँ Ex 11.2
Chapter 11 रचनाएँ Additional Questions
Chapter 12 वृतों से संबंधित क्षेत्रफल
Chapter 12 वृतों से संबंधित क्षेत्रफल Ex 12.1
Chapter 12 वृतों से संबंधित क्षेत्रफल Ex 12.2
Chapter 12 वृतों से संबंधित क्षेत्रफल Ex 12.3
Chapter 12 वृतों से संबंधित क्षेत्रफल Additional Questions
Chapter 13 पृष्ठीय क्षेत्रफल एवं आयतन
Chapter 13 पृष्ठीय क्षेत्रफल एवं आयतन Ex 13.1
Chapter 13 पृष्ठीय क्षेत्रफल एवं आयतन Ex 13.2
Chapter 13 पृष्ठीय क्षेत्रफल एवं आयतन Ex 13.3
Chapter 13 पृष्ठीय क्षेत्रफल एवं आयतन Ex 13.4
Chapter 13 पृष्ठीय क्षेत्रफल एवं आयतन Ex 13.5
Chapter 13 पृष्ठीय क्षेत्रफल एवं आयतन Additional Questions
Chapter 14 सांख्यिकी
Chapter 14 सांख्यिकी Ex 14.1
Chapter 14 सांख्यिकी Ex 14.2
Chapter 14 सांख्यिकी Ex 14.3
Chapter 14 सांख्यिकी Ex 14.4
Chapter 14 सांख्यिकी Additional Questions
Chapter 15 प्रायिकता
Chapter 15 प्रायिकता Ex 15.1
Chapter 15 प्रायिकता Ex 15.2
Chapter 15 प्रायिकता Additional Questions