Chapter 15 – प्रायिकता (Ex 15.1)

प्रायिकता

प्रश्न 1.
निम्नलिखित कथनों को पूरा कीजिए।

  1. घटना E की प्रायिकता + घटना ‘E-नहीं’ की प्रायिकता = _________ है।
  2. उस घटना की प्रायिकता जो घटित नहीं हो सकती __________ है। ऐसी घटना __________ कहलाती है।
  3. उस घटना की प्रायिकता जिसका घटित होना निश्चित है, _________ है। ऐसी घटना ___________ कहलाती है।
  4. किसी प्रयोग की सभी प्रारम्भिक घटनाओं की प्रायिकताओं का योग _________ है।
  5. किसी घटना की प्रायिकता ___________ से बड़ी या उसके बराबर होती है तथा ________ छोटी या उसके बराबर होती है।

उत्तर

  1. घटना E की प्रायिकता + घटना ‘E-नहीं’ की प्रायिकता = 1 है।
  2. उस घटना की प्रायिकता जो घटित नहीं हो सकती शून्य है। ऐसी घटना असम्भव घटना कहलाती है।
  3. उस घटना की प्रायिकता जिसका घटित होना निश्चित है, 1 है। ऐसी घटना निश्चित घटना कहलाती है।
  4. किसी प्रयोग की सभी प्रारम्भिक घटनाओं की प्रायिकताओं का योग 1 होता है।
  5. किसी घटना की प्रायिकता शून्य से बड़ी या उसके बराबर होती है तथा 1 से छोटी या उसके बराबर होती है।

प्रश्न 2.
निम्नलिखित प्रयोगों में से किन-किन प्रयोगों के परिणाम समप्रायिक हैं? स्पष्ट कीजिए।

  1. एक ड्राइवर कार चलाने का प्रयत्न करता है। कार चलना प्रारम्भ हो जाती है या कार चलना प्रारम्भ नहीं होती है।
  2. एक खिलाड़ी बास्केटबॉल को बास्केट में डालने का प्रयत्न करती है। वह बास्केट में बॉल डाल पाती है या नहीं डाल पाती है।
  3. एक सत्य-असत्य प्रश्न का अनुमान लगाया जाता है। उत्तर सही है या गलत होगा।
  4. एक बच्चे का जन्म होता है। वह एक लड़का है या एक लड़की है।

उत्तर

  1. एक ड्राइवर कार चलाने का प्रयत्न करता है। अधिकांश सम्भावना कार चलना प्रारम्भ होने की है, कार चलना प्रारम्भ न होने की सम्भावना कम ही है। अतः यह प्रयोग समप्रायिक नहीं है।
  2. एक खिलाड़ी बास्केटबॉल को बास्केट में डालने का प्रयत्न करती है। एक ही परिस्थिति में उसकी सफलता या असफलता की सम्भावना समान नहीं होती। अत: यह प्रयोग समप्रायिक नहीं है।
  3. एक सत्य-असत्य प्रश्न का अनुमान लगाया जाता है। अनुमान के सही होने की सम्भावना भी उतनी ही है जितनी की उसके गलत होने की है। अत: यह प्रयोग समप्रायिक है।
  4. एक बच्चे का जन्म होने पर उसके लड़की या लड़का होने की सम्भावनाएँ समान हैं। अतः प्रयोग समप्रायिक है।

प्रश्न 3.
फुटबॉल के खेल को प्रारम्भ करते समय यह निर्णय लेने के लिए कि कौन-सी टीम पहले बॉल लेगी, इसके लिए सिक्का उछालना एक न्यायसंगत विधि क्यों माना जाता है?
उत्तर
फुटबॉल के खेल को प्रारम्भ करते समय यह निर्णय लेने के लिए कि कौन-सी टीम पहले बॉल लेगी, एक सिक्का उछालना एक न्यायसंगत विधि इसलिए माना जाता है क्योंकि सिक्का सममित होता है और उसकी उछाल (tossing) निष्पक्ष (unbiased) होती है।

प्रश्न 4.
निम्नलिखित में से कौन-सी संख्या किसी घटना की प्रायिकता नहीं हो सकती?
(A) 23
(B) -1.5
(C) 15%
(D) 0.7
उत्तर
चूँकि प्रयोग में किसी घटना के घटित होने या घटित न होने की सम्भावना शून्य भले ही हो परन्तु ऋणात्मक नहीं हो सकती है। अतः स्पष्ट है कि विकल्प (B) में दी गई ऋणात्मक संख्या किसी घटना की प्रायिकता नहीं हो सकती।

प्रश्न 5.
यदि P(E) = 0.05 है तो ‘E-नहीं की प्रायिकता क्या है?
हल
दिया है, P(E) = 0.05
‘E-नहीं’ की प्रायिकता = P(E’) = 1 – P(E)
= 1 – 0.05
= 0.95
अतः घटना ‘E-नहीं’ की प्रायिकता P(E’) = 0.95

प्रश्न 6.
एक थैले में केवल नीबू की महक वाली मीठी गोलियाँ हैं। मालिनी बिना थैले में झाँके उसमें से एक गोली निकालती है। इसकी क्या प्रायिकता है कि वह निकाली गई गोली
(i) संतरे की महक वाली है?
(ii) नीबू की महक वाली है?
हल
∵ थैले में केवल नीबू की महक वाली गोलियाँ ही हैं। यदि थैले में से यदृच्छया एक गोली निकाली जाती है तो
(i) निकाली गई गोली ‘सन्तरे की महक वाली’ होने की घटना की सम्भावना शून्य है क्योंकि सभी गोलियाँ नीबू की महक वाली हैं।
अतः निकाली गई गोली सन्तरे की महक वाली हो, इसकी प्रायिकता शन्य होगी।

(ii) सभी गोलियों में नीबू की महक है। इसलिए नीबू की महक वाली गोली निकलने की घटना एक निश्चित घटना है।
अत: इसकी प्रायिकता 1 होगी।

प्रश्न 7.
यह दिया हुआ है कि 3 विद्यार्थियों के एक समूह में से 2 विद्यार्थियों के जन्मदिन एक ही दिन न होने की प्रायिकता 0.992 है। इसकी क्या प्रायिकता है कि इन 2 विद्यार्थियों का जन्मदिन एक ही दिन हो?
हल
माना E = 2 विद्यार्थियों का एक ही दिन जन्मदिन न होने की घटना
P(E) = 0.992
P(E) + P(E¯) = 1
0.992 + P(E¯) = 1
P(E¯) = 1 – 0.992 = 0.008
अतः 2 विद्यार्थियों का जन्मदिन एक ही दिन होने की प्रायिकता = 0.008

प्रश्न 8.
एक थैले में 3 लाल और 5 काली गेंदें हैं। इस थैले में से एक गेंद यदृच्छया निकाली जाती है। इसकी प्रायिकता क्या है कि गेंद (i) लाल हो? (ii) लाल नहीं हो?
हल
थैले में गेंदों की कुल संख्या = 3 लाल + 5 काली = 8
थैले में से एक गेंद यदृच्छया निकालने पर कुल सम्भावित परिणाम n(S) = 8
माना E = एक लाल गेंद निकालने की घटना
(i) गेंद लाल होने की घटना के अनुकूल परिणाम n(E) = 3
गेंद लाल होने की प्रायिकता P(R) = n(E)/n(S)=3/8
अत: गेंद लाल होने की प्रायिकता = 3/8
(ii) तब गेंद लाल न होने की प्रायिकता P(R’) = 1 – P(R)
= 1 – 3/8
= 5/8
अत: गेंद लाल न हो, इसकी प्रायिकता = 5/8

प्रश्न 9.
एक डिब्बे में 5 लाल कंचे, 8 सफेद कंचे और 4 हरे कंचे हैं। इस डिब्बे में से एक कंचा यदृच्छया निकाला जाता है। इसकी क्या प्रायिकता है कि निकाला गया कंचा
(i) लाल है?
(ii) सफेद है?
(iii) हरा नहीं है?
हल
लाल कंचों की संख्या = 5
सफेद कंचों की संख्या = 8
हरे कंचों की संख्या = 4
डिब्बे में कंचों की कुल संख्या = (5 + 8 + 4) = 17
जब डिब्बे में से एक कंचा यदृच्छया निकाला जाता है तो कुल सम्भावित परिणाम = 17
(i) निकाला गया कंचा लाल (R) होने की घटना के अनुकूल परिणाम = 5
अत: निकाला गया कंचा लाल होने की प्रायिकता
Bihar Board Class 10 Maths Solutions Chapter 15 प्रायिकता Ex 15.1 Q9

(ii) निकाला गया कंचा सफेद (W) हो, इसके अनुकूल परिणाम = 8
अत: निकाला गया कंचा सफेद होने की प्रायिकता
Bihar Board Class 10 Maths Solutions Chapter 15 प्रायिकता Ex 15.1 Q9.1

(iii) यदि हरा कंचा होने की घटना G हो तो घटना के अनुकूल परिणाम = 4
हरा कंचा न होने की घटना G के अनुकूल परिणाम = 17 – 4 = 13
अतः हरा कंचा न होने की प्रायिकता
Bihar Board Class 10 Maths Solutions Chapter 15 प्रायिकता Ex 15.1 Q9.2

प्रश्न 10.
एक पिग्गी बैंक (Piggy Bank) में, 50 पैसे के सौ सिक्के, ₹ 1 के पचास सिक्के, ₹ 2 के बीस सिक्के और ₹ 5 के दस सिक्के हैं। यदि पिग्गी बैंक को हिलाकर उल्टा करने पर कोई एक सिक्का गिरने के परिणाम समप्रायिक हैं तो इसकी क्या प्रायिकता है कि वह गिरा हुआ सिक्का
(i) 50 पैसे का होगा?
(ii) ₹ 5 का नहीं होगा?
हल
50 पैसे के सिक्कों की संख्या = 100
₹ 1 के सिक्कों की संख्या = 50
₹ 2 के सिक्कों की संख्या = 20
₹ 5 के सिक्कों की संख्या = 10
पिग्गी बैंक को अच्छी तरह हिलाकर उल्टा करने पर 1 सिक्का गिरने की घटना के सभी परिणाम सम-सम्भावी हैं, तब

(i) यदि गिरा हुआ सिक्का 50 पैसे का होने की घटना न हो, तो
घटना H के अनुकूल परिणाम = 100
कुल सम्भव परिणाम = 100 + 50 + 20 + 10 = 180
अतः गिरा हुआ सिक्का 50 पैसे का होने की प्रायिकता P(H) = 100/180=5/9

(ii) गिरा हुआ सिक्का ₹ 5 का होने के अनुकूल परिणाम = 10
गिरा हुआ सिक्का ₹ 5 का होने की प्रायिकता = 10/180=1/18
अत: गिरा हआ सिक्का ₹ 5 का न होने की प्रायिकता = 1 – 1/18 = 17/18

प्रश्न 11.
गोपी अपने जल -जीव कुंड (aquarium) के लिए एक दुकान से मछली खरीदती है। दुकानदार एक टंकी, जिसमें 5 नर मछली और 8 मादा मछली हैं, में से एक मछली यदृच्छया उसे देने के लिए निकालती है (आकृति देखिए)। इसकी क्या प्रायिकता है कि निकाली गई मछली नर मछली है?

हल
दुकानदार की टंकी में मछलियों की कुल संख्या = 5 नर + 8 मादा = 13 मछली
कुल सम्भव परिणाम = 13
टंकी में से 1 मछली यदृच्छया निकालने पर, निकाली गई।
मछली नर होने के अनुकूल परिणाम = 5
नर मछली होने की प्रायिकता
Bihar Board Class 10 Maths Solutions Chapter 15 प्रायिकता Ex 15.1 Q11.1
अत: निकाली गई मछली नर होने की प्रायिकता = 5/13

प्रश्न 12.
संयोग (chance) के एक खेल में, एक तीर को घुमाया जाता है, जो विश्राम में आने के बाद संख्याओं 1, 2, 3, 4, 5, 6, 7 और 8 में से किसी एक संख्या को इंगित करता है। (आकृति देखिए) यदि ये सभी परिणाम समप्रायिक हों तो इसकी क्या प्रायिकता है कि यह तीर इंगित
(i) 8 को करेगा?
(ii) एक विषम संख्या को करेगा?
(iii) 2 से बड़ी संख्या को करेगा?
(iv) 9 से छोटी संख्या को करेगा?

हल
संयोग के खेल में जब तीर को घुमाया जाता है, तो तीर के विश्राम आने पर इंगित कुल परिणाम = (1, 2, 3, 4, 5, 6, 7, 8) = 8
(i) तीर द्वारा संख्या 8 को इंगित करने के अनुकूल परिणाम = 1
उपर्युक्त घटना की प्रायिकता,
Bihar Board Class 10 Maths Solutions Chapter 15 प्रायिकता Ex 15.1 Q12.1
अत: संख्या 8 को इंगित करने की प्रायिकता = 1/8

(ii) तीर द्वारा एक विषम संख्या अंकित करने के परिणाम = (1, 3, 5, 7) = 4
विषम संख्या इंगित होने की प्रायिकता
Bihar Board Class 10 Maths Solutions Chapter 15 प्रायिकता Ex 15.1 Q12.2
अत: विषम संख्या इंगित करने की प्रायिकता = 1/2

(iii) 2 से बड़ी संख्या इंगित करने की घटना के अनुकूल परिणाम = (3, 4, 5, 6, 7, 8) = 6
2 से बड़ी संख्या इंगित करने की प्रायिकता
Bihar Board Class 10 Maths Solutions Chapter 15 प्रायिकता Ex 15.1 Q12.3
अत: 2 से बड़ी संख्या इंगित करने की प्रायिकता = 3/4

(iv) 9 से छोटी संख्या इंगित करने की घटना के अनुकूल परिणाम = (1, 2, 3, 4, 5, 6, 7, 8) = 8
9 से छोटी संख्या इंगित करने की प्रायिकता
Bihar Board Class 10 Maths Solutions Chapter 15 प्रायिकता Ex 15.1 Q12.4
अत: 9 से छोटी संख्या इंगित करने की प्रायिकता = 1

प्रश्न 13.
एक पासे को एक बार फेंका जाता है। निम्नलिखित को प्राप्त करने की प्रायिकता ज्ञात कीजिए :
(i) एक अभाज्य संख्या
(ii) 2 और 6 के बीच स्थित कोई संख्या
(iii) एक विषम संख्या।
हल
एक पासे को यदृच्छया फेंके जाने पर प्राप्त होने वाले सभी सम्भव
परिणामों की संख्या = {1, 2, 3, 4, 5, 6} = 6
यहाँ अभाज्य संख्याएँ = (2, 3, 5) = 3
2 और 6 के बीच स्थित संख्याएँ = (3, 4, 5) = 3
विषम संख्याएँ = (1, 3, 5) = 3
अतः प्रत्येक घटना के अनुकूल परिणाम = 3
प्रत्येक घटना की प्रायिकता = 3/6=1/2
अत: पासे पर
(i) अभाज्य संख्या आने की प्रायिकता = 3/6=1/2
(ii) 2 और 6 के बीच की कोई संख्या प्राप्त होने की प्रायिकता = 3/6=1/2
(ii) एक विषम संख्या प्राप्त होने की प्रायिकता = 1/2

प्रश्न 14.
52 पत्तों की अच्छी प्रकार से फेंटी गई एक गड्डी में से एक पत्ता निकाला जाता है। निम्नलिखित को प्राप्त करने की प्रायिकता ज्ञात कीजिए :
(i) लाल रंग का बादशाह
(ii) एक फेस कार्ड अर्थात् तस्वीर वाला पत्ता
(iii) लाल रंग का तस्वीर वाला पत्ता
(iv) पान का गुलाम
(v) हुकुम का पत्ता
(vi) एक ईंट की बेगम।
हल
ताश की गड्डी में 52 पत्ते होते हैं। गड्डी को अच्छी तरह फेंटकर गड्डी में से एक पत्ता निकालने पर पत्ता क्या है, इसके कुल सम्भावित परिणामों की संख्या = 52
(i) लाल रंग का बादशाह होने की घटना (A)
गड्डी में कुल 4 बादशाह होते हैं जिनमें पान तथा ईंट का बादशाह लाल होता है।
लाल रंग का बादशाह प्राप्त होने के अनुकूल परिणाम = 2
घटना A की प्रायिकता
Bihar Board Class 10 Maths Solutions Chapter 15 प्रायिकता Ex 15.1 Q14
अत: लाल बादशाह होने की प्रायिकता = 1/26

(ii) एक फेस कार्ड अर्थात् तस्वीर वाला पत्ता होने की घटना (B)
प्रत्येक समूह में 3 फेस कार्ड्स (बादशाह, बेगम व गुलाम) होते हैं।
गड्डी में कुल फेस कार्ड = 3 × 4 = 12
घटना B के अनुकूल परिणाम = 12
घटना B की प्रायिकता
Bihar Board Class 10 Maths Solutions Chapter 15 प्रायिकता Ex 15.1 Q14.1
अत: एक फेस कार्ड अर्थात् तस्वीर वाला पत्ता प्राप्त होने की प्रायिकता = 3/13

(iii) लाल रंग का तस्वीर वाला पत्ता होने की घटना (C)
कुल फेस कार्ड्स = 12
लाल रंग का तस्वीर वाले पत्तों की संख्या = 6
घटना C के अनुकूल परिणाम = 6
घटना C की प्रायिकता
Bihar Board Class 10 Maths Solutions Chapter 15 प्रायिकता Ex 15.1 Q14.2
अतः लाल रंग का तस्वीर वाला पत्ता निकलने की प्रायिकता = 3/26

(iv) पान का गुलाम होने की घटना (D)
गड्डी में पान का एक ही गुलाम होता है। अत: घटना D के अनुकूल परिणामों की संख्या = 1
घटना D की प्रायिकता
Bihar Board Class 10 Maths Solutions Chapter 15 प्रायिकता Ex 15.1 Q14.3
अतः निकाले गए पत्ते के पान का गुलाम होने की प्रायिकता = 1/52

(v) हुकुम का पत्ता होने की घटना (E)
गड्डी में हुकुम के पत्तों की संख्या = 13
घटना E के अनुकूल परिणाम = 13
घटना E की प्रायिकता
Bihar Board Class 10 Maths Solutions Chapter 15 प्रायिकता Ex 15.1 Q14.4
अत: निकाला गया पत्ता हुकुम का पत्ता होने की प्रायिकता P(E) = 1/4

(vi) ईंट की बेगम होने की घटना (F)
गड्डी में ईंट की केवल एक ही बेगम होती है।
घटनां F के अनुकूल परिणामों की संख्या = 1
तब, घटना F की प्रायिकता
Bihar Board Class 10 Maths Solutions Chapter 15 प्रायिकता Ex 15.1 Q14.5
अतः निकाला गया पत्ता ईंट की बेगम होने की प्रायिकता P(F) = 1/52

प्रश्न 15.
ताश के पाँच पत्तों-ईंट का दहला, गुलाम, बादशाह और इक्का, को पलटकर के अच्छी प्रकार फेंटा जाता है। फिर इनमें से यदृच्छया एक पत्ता निकाला जाता है।
(i) इसकी क्या प्रायिकता है कि यह पत्ता एक बेगम है।
(ii) यदि बेगम निकल आती है तो उसे अलग रख दिया जाता है और एक अन्य पत्ता निकाला जाता है। इसकी क्या प्रायिकता है कि दूसरा निकाला गया पत्ता (a) एक इक्का है? (b) एक बेगम है?
हल
ताश के 5 पत्तों-ईंट का दहला, गुलाम, बेगम, बादशाह, इक्का को पलटकर के फेंटा गया और फिर इसमें से यदृच्छया एक पत्ता निकाला जाता है।
इसके कुल सम्भव परिणाम = 5
(i) यदि निकाला गया पत्ता बेगम हो तो इस घटना के अनुकूल परिणाम = 1
अतः निकाला गया पत्ता बेगम होने की प्रायिकता = 1/5

(ii) यदि बेगम निकल आती है तो उसे अलग रख दिया जाता है और शेष पत्तों में से फिर एक पत्ता निकाला जाता है।
तब, कुल सम्भव परिणाम = 4 (दहला, गुलाम, बादशाह, इक्का)
(a) दूसरा पत्ता इक्का होने के अनुकूल परिणाम = 1
अतः दूसरा पत्ता इक्का होने की प्रायिकता = 1/4
(b) दूसरा पत्ता बेगम होने के अनुकूल परिणाम = शून्य क्योंकि इन पत्तों में बेगम है ही नहीं।
अतः दूसरा पत्ता बेगम होने की प्रायिकता = 0/4 = 0

प्रश्न 16.
किसी कारण 12 खराब पेन 132 अच्छे पेनों में मिल गए हैं। केवल देखकर यह नहीं बताया जा सकता है कि कोई पेन खराब है या अच्छा है। इस मिश्रण में से, एक पेन यदृच्छया निकाला जाता है। निकाले गए पेन की अच्छा होने की प्रायिकता ज्ञात कीजिए।
हल
अच्छे पेनों की संख्या = 132
तथा खराब पेनों का संख्या = 12
मिश्रण में पेनों की कुल संख्या = 132 + 12 = 144
मिश्रण में से एक पेन यदृच्छया निकाला जाता है।
कुल सम्भव परिणाम = 144
अच्छा पेन निकलने के अनुकूल परिणाम = 132
अच्छा पेन निकलने की प्रायिकता
Bihar Board Class 10 Maths Solutions Chapter 15 प्रायिकता Ex 15.1 Q16
अतः अच्छा पेन निकलने की प्रायिकता = 11/12

प्रश्न 17.
(i) 20 बल्बों के एक समूह में 4 बल्ब खराब हैं। इस समूह में से एक बल्ब यदृच्छया निकाला जाता है। इसकी क्या प्रायिकता है कि यह बल्ब खराब होगा?
(ii) मान लीजिए (i) में निकाला गया बल्ब खराब नहीं है और न ही इसे दुबारा बल्बों के साथ मिलाया जाता है। अब शेष बल्बों में से एक बल्ब यदृच्छया निकाला जाता है। इसकी क्या प्रायिकता है कि यह बल्ब खराब नहीं होगा?
हल
समूह में बल्बों की कुल संख्या = 20
खराब बल्बों की संख्या = 4
यदि एक बल्ब यदृच्छया निकाला जाता है तो
(i) बल्ब खराब होने के अनुकूल परिणाम = 4
कुल सम्भव परिणाम = 20
बल्ब खराब होने की प्रायिकता

अतः बल्ब खराब होने की प्रायिकता = 1/5

(ii) यदि निकाला गया बल्ब खराब नहीं है तो इसे पुन: बल्बों के साथ नहीं मिलाया जाता है। शेष बल्बों मे से पुन: एक बल्ब निकाला जाता है।
कुल सम्भव परिणाम = 20 – 1 = 19
तथा खराब बल्ब होने के अनुकूल परिणाम = 4
तब, बल्ब खराब निकलने की प्रायिकता = 4/19
बल्ब खराब न होने की प्रायिकता = 1 – 4/19 = 15/19
अत: निकाला गया बल्ब खराब न होने की प्रायिकता = 15/19

प्रश्न 18.
एक पेटी में 90 डिस्क (discs) हैं, जिन पर 1 से 90 तक संख्याएँ अंकित हैं। यदि इस पेटी में से एक डिस्क यदृच्छया निकाली जाती है तो इसकी प्रायिकता ज्ञात कीजिए कि इस डिस्क पर अंकित होगी :
(i) दो अंकों की एक संख्या
(ii) एक पूर्ण वर्ग संख्या
(iii) 5 से विभाज्य एक संख्या।
हल
डिस्कों की कुल संख्या = 90
यदि एक डिस्क यदृच्छया निकाली जाती है तो
कुल सम्भव परिणाम = (1, 2, 3, 4,……….., 90) = 90
इन परिणामों में दो अंकों वाली संख्याएँ = (10, 11, 12,……….., 90) = 81
(i) दो अंकों की संख्या अंकित डिस्क निकलने के अनुकूल परिणाम = 81
और कुल सम्भावित परिणाम = 90
अत: डिस्क पर दो अंकों की संख्या अंकित होने की प्रायिकता = 81/90=9/10

(ii) पूर्ण वर्ग संख्याएँ = (1, 4, 9, 16, 25, 36, 49, 64, 81) = 9
डिस्क पर पूर्ण वर्ग संख्या अंकित होने के अनुकूल परिणाम = 9
और कुल सम्भावित परिणाम = 90
अत: डिस्क पर पूर्ण वर्ग संख्या अंकित होने की प्रायिकता = 9/90=1/10

(iii) 5 से. विभाज्य संख्याएँ = (5, 10, 15, 20, ……….., 90) = 18
डिस्क पर 5 से विभाज्य संख्या अंकित होने के अनुकूल परिणाम = 18
और कुल सम्भव परिणाम = 90
अतः डिस्क पर 5 से विभाज्य संख्या अंकित होने की प्रायिकता = 18/90=1/5

प्रश्न 19.
एक बच्चे के पास ऐसा पासा है जिसके फलकों पर निम्नलिखित अक्षर अंकित हैं-
Bihar Board Class 10 Maths Solutions Chapter 15 प्रायिकता Ex 15.1 Q19
इस पासे को एक बार फेंका जाता है। इसकी क्या प्रायिकता है कि
(i) A प्राप्त हो?
(ii) D प्राप्त हो?
हल
दो पासों पर A तथा एक-एक पासे पर B, C, D, E अंकित है।
पासा फेंकने पर कुल सम्भव परिणाम = 6
(i) पासा फेंकने पर A प्राप्त होने के अनुकूल परिणाम = 2
अतः पासे पर A अक्षर आने की प्रायिकता = 2/6=1/3

(ii) D प्राप्त होने के अनुकूल परिणाम = 1
अतः पासे पर D अक्षर आने की प्रायिकता = 1/6

प्रश्न 20.
मान लीजिए आप एक पासे को आकृति में दर्शाए आयताकार क्षेत्र में यदृच्छया रूप से गिराते हैं। इसकी क्या प्रायिकता है कि वह पासा 1 m व्यास वाले वृत्त के अन्दर गिरेगा?

हल
आयताकार क्षेत्र का क्षेत्रफल = 3 × 2 = 6 m2
वृत्त का व्यास = 1 m
वृत्त की त्रिज्या = 1/2 m
वृत्त का क्षेत्रफल = πr2
= π×(1/2)2
= π/4 m2
जब एक पासा यदृच्छया फेंका जाता है, तो उसके गिरने का व्यापक क्षेत्र आयताकार क्षेत्र होगा।
गिरने (पतन) का सम्पूर्ण क्षेत्र = 6 m2
वृत्तीय क्षेत्र में गिरने की घटना का क्षेत्र = π/4 m2
तब, पासे की वृत्त के अन्दर गिरने की प्रायिकता

अत: पासे के वृत्त के अन्दर गिरने की प्रायिकता = π/24

प्रश्न 21.
144 बॉल-पेनों के समूह में 20 बॉल-पेन खराब हैं और शेष अच्छे हैं। आप वही पेन खरीदना चाहेंगे जो अच्छा हो, परन्तु खराब पेन आप खरीदना नहीं चाहेंगे। दुकानदार इन पेनों में से, यदृच्छया एक पेन निकालकर आपको देता है। इसकी क्या प्रायिकता है कि
(i) आप वह पेन खरीदेंगे?
(ii) आप वह पेन नहीं खरीदेंगे?
हल
समूह में कुल बॉल-पेनों की संख्या = 144
खराब बॉल-पेनों की संख्या = 20
ठीक बॉल-पेनों की संख्या = 144 – 20 = 124
पेनों के समूह में से दुकानदार यदृच्छया एक पेन निकालता है
बॉल-पेन के अच्छा-बुरा होने सम्बन्धी कुल सम्भव परिणाम = 144
बॉल-पेन के ठीक होने की घटना के अनुकूल परिणाम = 124
बॉल-पेन खराब होने की घटना के अनुकूल परिणाम = 20
हम ठीक बॉल-पेन ही खरीदना चाहेंगे।
बॉल-पेन को खरीद लेने की प्रायिकता = 124/144=31/36
बॉल-पेन के न खरीदने की प्रायिकता = 20/144=5/36
अत: बॉल-पेन खरीदेंगे इसकी प्रायिकता 31/36 और हम वह बॉल-पेन नहीं खरीदेंगे, इसकी प्रायिकता = 5/36

प्रश्न 22.
एक सलेटी और एक नीले पासे को एक साथ फेंका जाता है। दोनों पासों पर प्राप्त होने वाले परिणाम अंकित कीजिए।
(i) निम्न सारणी को पूरा कीजिए :

(ii) एक विद्यार्थी यह तर्क देता है कि ‘यहाँ कुल 11 परिणाम 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 और 12 हैं। अतः ‘प्रत्येक की प्रायिकता 1/11 है। क्या आप इस तर्क से सहमत हैं? सकारण उत्तर दीजिए।
हल
दो पासों को उछालने पर कुल सम्भव परिणाम निम्न है-
(i) (1, 1) (1, 2) (1, 3) (1, 4) (1, 5) (1, 6)
(2, 1) (2, 2) (2, 3) (2, 4) (2, 5) (2, 6)
(3, 1) (3, 2) (3, 3) (3, 4) (3, 5) (3, 6)
(4, 1) (4, 2) (4, 3) (4, 4) (4, 5) (4, 6)
(5, 1) (5, 2) (5, 3) (5, 4) (5, 5) (5, 6)
(6, 1) (6, 2) (6, 3) (6, 4) (6, 5) (6, 6)
n(S) = 36
(a) माना E1 = दो पासों का योग 3 है = {(1, 2), (2, 1}}
n(E1) = 2
P(E1) = n(E1)/n(S)=2/36=1/18
(b) माना E2 = दो पासों का योग 4 है = {(1, 3), (2, 2), (3, 1)}
n(E2) = 3
P(E2) = n(E2)/n(S)=3/36=1/12
(c) माना E3 = दो पासों का योग 5 है = {(1, 4), (2, 3), (3, 2), (4, 1)}
n(E3) = 4
P(E3) = n(E3)/n(S)=4/36=1/9
(d) माना E4 = दो पासों का योग 6 है = {(1, 5), (2, 4), (3, 3), (4, 2), (5, 1)}
n(E4) = 5
P(E4) = n(E4)/n(S)=5/36
(e) माना E5 = दो पासों का योग 7 है = {(1, 6), (2, 5), (3, 4), (4, 3), (5, 2), (6, 1)}
n(E5) = 6
P(E5) = n(E5)/n(S)=6/36=1/6
(f) माना E6 = दो पासों का योग 8 है = {(2, 6), (3, 5), (4, 4), (5, 3), (6, 2)}
n(E6) = 5
P(E6) = n(E6)/n(S)=5/36
(g) माना E7 = दो पासों का योग 9 है = {(3, 6), (4, 5), (5, 4), (6, 3)}
n(E7) = 4
P(E7) = n(E7)/n(S)=4/36=1/9
(h) माना E8 = दो पासों का योग 10 है = {{4, 6), (5, 5), (6, 4}}
n(E8) = 3
P(E8) = n(E8)/n(S)=3/36=1/12
(i) माना E9 = दो पासों का योग 11 है = {(6, 5), (5, 6)}
n(E9) = 2
P(E9) = n(E9)/n(S)=2/36=1/18
(j) माना E10 = दो पासों का योग 12 है = {(6, 6)}
n(E10) = 1
P(E10) = n(E10)/n(S)=1/36
अतः दी हुई सारणी पूरित रूप में निम्नवत् है-

(ii) विद्यार्थी का तर्क त्रुटिपूर्ण है क्योंकि सभी 11 घटनाएँ प्रारम्भिक घटनाएँ नहीं हैं। प्रत्येक घटना से सम्बन्धित परिणामों की आवृत्तियाँ भिन्न-भिन्न हैं। अत: विद्यार्थी का तर्क असंगत है।

प्रश्न 23.
एक खेल में एक रुपये के सिक्के को तीन बार उछाला जाता है और प्रत्येक बार का परिणाम लिख लिया जाता है। तीनों परिणाम समान होने पर, अर्थात् तीन चित या पट प्राप्त होने पर, हनीफ खेल में जीत जाएगा, अन्यथा वह हार जाएगा। हनीफ के खेल में हार जाने की प्रायिकता परिकलित कीजिए।
हल
एक खेल में एक रुपया यदृच्छया तीन बार उछाला जाता है। परिणाम चित को H तथा पट को T से इंगित करें और परिणाम अंकित करें तो सभी सम्भावित परिणाम निम्नवत् होंगे-

अतः हनीफ के हारने की प्रायिकता = 3/4

प्रश्न 24.
एक पासे को दो बार फेंका जाता है। इसकी क्या प्रायिकता है कि
(i) 5 किसी भी बार में नहीं आएगा?
(ii) 5 कम-से-कम एक बार आएगा?
हल
जब एक पासे को दो बार मे यदृच्छया फेंका जाता है तो फलकों पर प्राप्त अंक निम्नवत् होंगे-

कुल सम्भव परिणाम = 36
वे परिणाम जिनमें 5 आता है = 11
वे परिणाम जिनमें 5 कभी न आता है = 36 – 11 = 25
(i) 5 न आने की घटना के अनुकूल परिणाम = 25
कुल सम्भव परिणाम = 36
5 किसी भी बार न आने की प्रायिकता
Bihar Board Class 10 Maths Solutions Chapter 15 प्रायिकता Ex 15.1 Q24.1
अतः 5 किसी भी बार में न आने की प्रायिकता = 25/36

(ii) 5 कम-से-कम एक बार आने के अनुकूल परिणाम = 11
और कुल सम्भव परिणाम = 36
5 कम-से-कम एक बार आने की प्रायिकता
Bihar Board Class 10 Maths Solutions Chapter 15 प्रायिकता Ex 15.1 Q24.2
अत: 5 कम-से-कम एक बार आने की प्रायिकता = 11/36

प्रश्न 25.
निम्नलिखित में से कौन-से तर्क सत्य हैं और कौन-से तर्क असत्य हैं? सकारण उत्तर दीजिए।
(i) यदि दो सिक्कों को एक साथ उछाला जाता है तो इसके तीन सम्भावित परिणाम-दो चित, दो पट या प्रत्येक एक बार हैं। अतः इनमें से प्रत्येक परिणाम की प्रायिकता 1/3 है।
(ii) यदि एक पासे को फेंका जाता है तो इसके दो सम्भावित परिणाम-एक विषम संख्या या एक सम संख्या हैं। अत: एक विषम संख्या ज्ञात करने की प्रायिकता 1/2 है।
हल
(i) दो सिक्कों को उछालने पर सम्भव परिणाम = {(H, H), (H, T), (T, H), (T, T)}
तब P(H, H) = 14 तथा P{T, T) = 1/4
और P{(H, T), (T, H)} = 2/4=1/2
अत: छात्र का तर्क असत्य है।

(ii) जब एक पासे को फेंका जाता है तो कुल सम्भव परिणाम = 6
सम संख्या आने के अनुकूल परिणाम = (2, 4, 6) = 3
विषम संख्या आने के अनुकूल परिणाम = (1, 3, 5) = 3
विषम संख्या आने की प्रायिकता = 3/6=1/2
अत: छात्र का तर्क सत्य है।

You must watch….

Chapter 1 वास्तविक संख्याएँ

Chapter 1 वास्तविक संख्याएँ Ex 1.1
Chapter 1 वास्तविक संख्याएँ Ex 1.2
Chapter 1 वास्तविक संख्याएँ Ex 1.3
Chapter 1 वास्तविक संख्याएँ Ex 1.4
Chapter 1 वास्तविक संख्याएँ Additional Questions

Chapter 2 बहुपद

Chapter 2 बहुपद Ex 2.1
Chapter 2 बहुपद Ex 2.2
Chapter 2 बहुपद Ex 2.3
Chapter 2 बहुपद Ex 2.4
Chapter 2 बहुपद Additional Questions

Chapter 3 दो चरों वाले रैखिक समीकरण युग्म

Chapter 3 दो चरों वाले रैखिक समीकरण युग्म Ex 3.1
Chapter 3 दो चरों वाले रैखिक समीकरण युग्म Ex 3.2
Chapter 3 दो चरों वाले रैखिक समीकरण युग्म Ex 3.3
Chapter 3 दो चरों वाले रैखिक समीकरण युग्म Ex 3.4
Chapter 3 दो चरों वाले रैखिक समीकरण युग्म Ex 3.5
Chapter 3 दो चरों वाले रैखिक समीकरण युग्म Ex 3.6
Chapter 3 दो चरों वाले रैखिक समीकरण युग्म Ex 3.7
Chapter 3 दो चरों वाले रैखिक समीकरण युग्म Additional Questions

Chapter 4 द्विघात समीकरण

Chapter 4 द्विघात समीकरण Ex 4.1
Chapter 4 द्विघात समीकरण Ex 4.2
Chapter 4 द्विघात समीकरण Ex 4.3
Chapter 4 द्विघात समीकरण Ex 4.4
Chapter 4 द्विघात समीकरण Additional Questions

Chapter 5 समांतर श्रेढ़ियाँ

Chapter 5 समांतर श्रेढ़ियाँ Ex 5.1
Chapter 5 समांतर श्रेढ़ियाँ Ex 5.2
Chapter 5 समांतर श्रेढ़ियाँ Ex 5.3
Chapter 5 समांतर श्रेढ़ियाँ Ex 5.4
Chapter 5 समान्तर श्रेढ़ियाँ Additional Questions

Chapter 6 त्रिभुज

Chapter 6 त्रिभुज Ex 6.1
Chapter 6 त्रिभुज Ex 6.2
Chapter 6 त्रिभुज Ex 6.3
Chapter 6 त्रिभुज Ex 6.4
Chapter 6 त्रिभुज Ex 6.5
Chapter 6 त्रिभुज Ex 6.6
Chapter 6 त्रिभुज Additional Questions

Chapter 7 निर्देशांक ज्यामिति

Chapter 7 निर्देशांक ज्यामिति Ex 7.1
Chapter 7 निर्देशांक ज्यामिति Ex 7.2
Chapter 7 निर्देशांक ज्यामिति Ex 7.3
Chapter 7 निर्देशांक ज्यामिति Ex 7.4
Chapter 7 निर्देशांक ज्यामिति Additional Questions

Chapter 8 त्रिकोणमिति का परिचय

Chapter 8 त्रिकोणमिति का परिचय Ex 8.1
Chapter 8 त्रिकोणमिति का परिचय Ex 8.2
Chapter 8 त्रिकोणमिति का परिचय Ex 8.3
Chapter 8 त्रिकोणमिति का परिचय Ex 8.4
Chapter 8 त्रिकोणमिति का परिचय Additional Questions

Chapter 9 त्रिकोणमिति के कुछ अनुप्रयोग

Chapter 9 त्रिकोणमिति के कुछ अनुप्रयोग Ex 9.1
Chapter 9 त्रिकोणमिति के कुछ अनुप्रयोग Additional Questions

Chapter 10 वृत्त

Chapter 10 वृत्त Ex 10.1
Chapter 10 वृत्त Ex 10.2
Chapter 10 वृत्त Additional Questions

Chapter 11 रचनाएँ

Chapter 11 रचनाएँ Ex 11.1
Chapter 11 रचनाएँ Ex 11.2
Chapter 11 रचनाएँ Additional Questions

Chapter 12 वृतों से संबंधित क्षेत्रफल

Chapter 12 वृतों से संबंधित क्षेत्रफल Ex 12.1
Chapter 12 वृतों से संबंधित क्षेत्रफल Ex 12.2
Chapter 12 वृतों से संबंधित क्षेत्रफल Ex 12.3
Chapter 12 वृतों से संबंधित क्षेत्रफल Additional Questions

Chapter 13 पृष्ठीय क्षेत्रफल एवं आयतन

Chapter 13 पृष्ठीय क्षेत्रफल एवं आयतन Ex 13.1
Chapter 13 पृष्ठीय क्षेत्रफल एवं आयतन Ex 13.2
Chapter 13 पृष्ठीय क्षेत्रफल एवं आयतन Ex 13.3
Chapter 13 पृष्ठीय क्षेत्रफल एवं आयतन Ex 13.4
Chapter 13 पृष्ठीय क्षेत्रफल एवं आयतन Ex 13.5
Chapter 13 पृष्ठीय क्षेत्रफल एवं आयतन Additional Questions

Chapter 14 सांख्यिकी

Chapter 14 सांख्यिकी Ex 14.1
Chapter 14 सांख्यिकी Ex 14.2
Chapter 14 सांख्यिकी Ex 14.3
Chapter 14 सांख्यिकी Ex 14.4
Chapter 14 सांख्यिकी Additional Questions

Chapter 15 प्रायिकता

Chapter 15 प्रायिकता Ex 15.2
Chapter 15 प्रायिकता Additional Questions

Leave a Comment

Your email address will not be published. Required fields are marked *