पृष्ठीय क्षेत्रफल एवं आयतन
प्रश्न 1.
व्यास 3 mm वाले ताँबे के तार को 12 cm लम्बे और 10 cm व्यास वाले एक बेलन पर इस प्रकार लपेटा जाता है कि वह बेलन के व्रक पृष्ठ को पूर्णतया ढक लेता है। तार की लम्बाई और द्रव्यमान ज्ञात कीजिए, यह मानते हुए कि ताँबे का द्रव्यमान 8.88 g/cm3 हैं।
हल
बेलन का व्यास = 10 cm तथा बेलन की ऊँचाई = 12 cm
बेलन की परिधि = π × व्यास = π × 10 = 10π cm
बेलन पर 1 चक्कर लपेटने के लिए तार की लम्बाई = 10π cm
जब बेलन पर तार का 1 चक्कर लपेटते हैं तो उसकी 3 mm लम्बाई ढक जाती है।
जब बेलन पर तार के 2 चक्कर लपेटते हैं तो उसकी (2 × 3) mm लम्बाई ढक जाती है।
जब बेलन पर तार के 3 चक्कर लपेटते हैं तो उसकी (3 × 3) mm लम्बाई ढक जाती है।
जब बेलन पर तार के 4 चक्कर लपेटते हैं तो उसकी (4 × 3) mm लम्बाई ढक जाती है।
तब, सम्पूर्ण बेलन को ढकने के लिए तार के 1203 = 40 चक्कर लपेटने होंगे।
40 चक्कर बेलन पर लपेटने के लिए आवश्यक तार की माप
= 40 × 10π
= 400π cm
= 400 × 3.14 cm
= 1256 cm
= 12.56 m (लगभग)
अत: तार की अभीष्ट लम्बाई = 12.56 m
तथा तार का द्रव्यमान = 1256 × 8.88 g
= 11153.3 g
= 11.153 kg
प्रश्न 2.
एक समकोण त्रिभुज, जिसकी भुजाएँ 3 cm और 4 cm हैं (कर्ण के अतिरिक्त), को उसके कर्ण के परितः घुमाया जाता है। इस प्रकार प्राप्त द्वि-शंकु (double cone) के आयतन और पृष्ठीय क्षेत्रफल ज्ञात कीजिए। (r का मान जो भी उपयुक्त लगे, प्रयोग कीजिए।)
हल
अतः समकोण ∆ABC के परिक्रमण से बने द्वि-शंकु की त्रिज्या (r) = 2.4 cm
तब, द्वि-शंकु (दोनों शंकुओं) का आयतन = शंकु (ABB’) का आयतन + शंकु (CBB’) का आयतन
= 1/3πr2 (AO) + 1/3πr2 (OC)
= 1/3πr2 (AO + OC)
= 1/3πr2 (AC) (∵ AO + OC = AC)
= 1/3π × (2.4)2 × 5
= 9.6π
= 9.6 × 3.14
= 30.144 cm3
और द्वि-शंकु (दोनों शंकुओं) का पृष्ठीय क्षेत्रफल = शंकु (ABB’) का वक्रपृष्ठ + शंकु (CBB’) का वक्र पृष्ठ
= πr(AB) + πr(BC)
= πr(AB + BC)
= 3.14 × 2.4 × (4 + 3)
= 3.14 × 2.4 × 7
= 52.75 cm2
अतः द्वि-शंकु का आयतन = 30.144 cm3
तथा पृष्ठीय क्षेत्रफल = 52.75 cm2 (लगभग)।
प्रश्न 3.
एक टंकी, जिसके आन्तरिक मापन 150 cm × 120 cm × 110 cm हैं, में 129600 cm3 पानी है। इस पानी में कुछ छिद्र वाली ईंटें तब तक डाली जाती हैं, जब तक कि टंकी पूरी ऊपर तक भर न जाए। प्रत्येक ईंट अपने आयतन का 117 पानी सोख लेती है। यदि प्रत्येक ईंट की माप 22.5 cm × 7.5 cm × 6.5 cm है तो टंकी में कुल कितनी ईंटें डाली जा सकती हैं, ताकि उसमें से पानी बाहर न बहे?
हल
टंकी का आयतन = 150 × 120 × 110 cm3 = 1980000 cm3
टंकी में भरे पानी का आयतन = 129600 cm3
प्रत्येक ईंट का आयतन = 22.5 × 7.5 × 6.5 cm3 = 1096.875 cm3
माना टंकी में x ईंटें डालने पर टंकी पानी से ऊपर तक भर जाएगी।
तब, x ईंटों का आयतन = 1096.875x cm3
तब, ईंटों द्वारा शोषित पानी का आयतन = 1096.875 × 1/17 = (1096.875x)/17 cm3
तब, टंकी में शेष बचे पानी का आयतन = (129600 – (1096.875x)/17) cm3
तब, x ईंटों का आयतन + टंकी में शेष बचे पानी का आयतन = टंकी का आयतन
⇒ (1096.875 x) + 129600 – (1096.875x)/17 = 1980000
⇒ 1096.8757x – (1096.875x)/17 = 1980000 – 129600
⇒ 1096.875x(1 – 1/17) = 1850400
⇒ 1096.875x = (1850400×17)/16
⇒ x = (1850400×17)/(16×1096.875) = 1792.4
⇒ x = 1792
अत: टंकी में डाली गई ईंटों की संख्या 1792 (लगभग) है।
प्रश्न 4.
किसी महीने के 15 दिनों में, एक नदी की घाटी में 10 cm वर्षा हुई। यदि इस घाटी का क्षेत्रफल 97280 km2 है तो दर्शाइए कि कल वर्षा लगभग तीन नदियों के सामान्य पानी के योग के समतुल्य थी, जबकि प्रत्येक नदी 1072 km लम्बी, 75 m चौड़ी और 3 m गहरी है।
हल
प्रत्येक नदी का आयतन = 1072 km × 75 m × 3 m
= 1072 × 75 × 3 × 1000 m3
= 241200000 m3
तीनों नदियों के कुल पानी का आयतन = 3 × 241200000 m3
नदियों का कुल पानी = 723600000 m3
घाटी का क्षेत्रफल = 97280 km2
= 97280 × (1000)2 m2
= 97280000000 m2
वर्षा के पानी का आयतन = 97280000000 × 10/100 m3 (∵ 10 cm = 10/100 m)
= 9728000000 m3
ये दोनों आयतन बराबर होने चाहिए लेकिन ये बराबर नहीं हैं।
इससे स्पष्ट है कि प्रश्न में दिए तथ्य असंगत हैं।
प्रश्न 5.
टीन की बनी हुई एक तेल की कुप्पी 10 cm लम्बे एक बेलन में एक शंकु के छिन्नक को जोड़ने से बनी है। यदि इसकी कुल ऊँचाई 22 cm है, बेलनाकार भाग का व्यास 8 cm है और कुप्पी के ऊपरी सिरे का व्यास 18 cm है, तो इसके बनाने में लगी टीन की चादर का क्षेत्रफल ज्ञात कीजिए।
हल
दिया है, बेलनाकार भाग की ऊँचाई (h) = 10 cm
कुप्पी की कुल ऊँचाई = 22 cm
शंकु के छिन्नक की ऊँचाई (H) = 22 – 10 = 12 cm
शंकु के छिन्नक की ऊपरी त्रिज्या (R1) = 182 = 9 cm
शंकु के छिन्नक की निचली त्रिज्या (R2) = 82 = 4 cm
बेलनाकार भाग की त्रिज्या (r) = 4 cm
बेलनाकार भाग का वक्रपृष्ठ = 2πrh
= 2π × 4 × 10
= 80π cm2
शंकु के छिन्नक की तिर्यक ऊँचाई
शंकु के छिन्नक का वक्र पृष्ठ = π(R1 + R2)l
= π(9 + 4) × 13
= 169π cm2
अतः कुप्पी का कुल पृष्ठीय क्षेत्रफल = बेलनाकार भाग का वक्र पृष्ठ + शंकु छिन्नक का वक्र पृष्ठ
= 80π + 169π
= 249π cm2
= 249 × 22/7 cm2
= 5478/7 cm2
प्रश्न 6.
शंकु के एक छिन्नक के लिए, पूर्व स्पष्ट किए संकेतों का प्रयोग करते हुए, वक्र पृष्ठीय क्षेत्रफल और सम्पूर्ण पृष्ठीय क्षेत्रफल के सूत्रों को सिद्ध कीजिए।
हल
माना एक शंकु (VAB) का शीर्ष V, आधार की त्रिज्या r2 और तिर्यक ऊँचाई l2 है। इस शंकु के शीर्ष V से h1 नीचे स्थित बिन्दु O’ से आधार के समान्तर एक शंकु (VCD) काटा गया है जिसकी त्रिज्या r1 तथा तिर्यक ऊँचाई l1 है।
बिन्दु D से आधार पर लम्ब DE खींचा।
ΔVOD तथा ΔDOB में,
∠VO’D = ∠DEB [∵ VO ⊥ AB और VO’ ⊥ CD]
∠VDO’ = ∠DBE [संगत कोण]
ΔVOD और ΔDEB समरूप हैं।
छिन्नक का वक्र पृष्ठीय क्षेत्रफल = शंकु (VAB) का वक्र पृष्ठ – शंकु (VCD) का वक्र पृष्ठ
= πr2l2 – πr1l1
= πr2(l1 + BD) – πr1l1
= πr2l1 + πr2 (BD) – πr1l1
= π(r2 – l1) l1 + πr2l (जहाँ BD = l = छिन्नक की तिर्यक ऊँचाई है।)
= π(r2 – r1) (r1r2−r1) l + πr2l [समी०(1) से]
= πr1l + πr2l
अत: छिन्नक का वक्र पृष्ठीय क्षेत्रफल = π(r1 + r2)l
इति सिद्धम्
और छिन्नक का सम्पूर्ण पृष्ठ = वक्र पृष्ठ + पहले सिरे का क्षेत्रफल + दूसरे सिरे का क्षेत्रफल
= π(r1 + r2) l + πr12+πr22
= π(r1 + r2) l + π(r12+r22)
इति सिद्धम्
प्रश्न 7.
शंकु के एक छिन्नक के लिए, स्पष्ट संकेतों का प्रयोग करते हुए, आयतन का सूत्र सिद्ध कीजिए।
हल
पिछले प्रश्न से, शंकु (VAB) की ऊँचाई h2 तथा त्रिज्या r2 है।
इति सिद्धम्
You must watch….
Chapter 1 वास्तविक संख्याएँ
Chapter 1 वास्तविक संख्याएँ Ex 1.1
Chapter 1 वास्तविक संख्याएँ Ex 1.2
Chapter 1 वास्तविक संख्याएँ Ex 1.3
Chapter 1 वास्तविक संख्याएँ Ex 1.4
Chapter 1 वास्तविक संख्याएँ Additional Questions
Chapter 2 बहुपद
Chapter 2 बहुपद Ex 2.1
Chapter 2 बहुपद Ex 2.2
Chapter 2 बहुपद Ex 2.3
Chapter 2 बहुपद Ex 2.4
Chapter 2 बहुपद Additional Questions
Chapter 3 दो चरों वाले रैखिक समीकरण युग्म
Chapter 3 दो चरों वाले रैखिक समीकरण युग्म Ex 3.1
Chapter 3 दो चरों वाले रैखिक समीकरण युग्म Ex 3.2
Chapter 3 दो चरों वाले रैखिक समीकरण युग्म Ex 3.3
Chapter 3 दो चरों वाले रैखिक समीकरण युग्म Ex 3.4
Chapter 3 दो चरों वाले रैखिक समीकरण युग्म Ex 3.5
Chapter 3 दो चरों वाले रैखिक समीकरण युग्म Ex 3.6
Chapter 3 दो चरों वाले रैखिक समीकरण युग्म Ex 3.7
Chapter 3 दो चरों वाले रैखिक समीकरण युग्म Additional Questions
Chapter 4 द्विघात समीकरण
Chapter 4 द्विघात समीकरण Ex 4.1
Chapter 4 द्विघात समीकरण Ex 4.2
Chapter 4 द्विघात समीकरण Ex 4.3
Chapter 4 द्विघात समीकरण Ex 4.4
Chapter 4 द्विघात समीकरण Additional Questions
Chapter 5 समांतर श्रेढ़ियाँ
Chapter 5 समांतर श्रेढ़ियाँ Ex 5.1
Chapter 5 समांतर श्रेढ़ियाँ Ex 5.2
Chapter 5 समांतर श्रेढ़ियाँ Ex 5.3
Chapter 5 समांतर श्रेढ़ियाँ Ex 5.4
Chapter 5 समान्तर श्रेढ़ियाँ Additional Questions
Chapter 6 त्रिभुज
Chapter 6 त्रिभुज Ex 6.1
Chapter 6 त्रिभुज Ex 6.2
Chapter 6 त्रिभुज Ex 6.3
Chapter 6 त्रिभुज Ex 6.4
Chapter 6 त्रिभुज Ex 6.5
Chapter 6 त्रिभुज Ex 6.6
Chapter 6 त्रिभुज Additional Questions
Chapter 7 निर्देशांक ज्यामिति
Chapter 7 निर्देशांक ज्यामिति Ex 7.1
Chapter 7 निर्देशांक ज्यामिति Ex 7.2
Chapter 7 निर्देशांक ज्यामिति Ex 7.3
Chapter 7 निर्देशांक ज्यामिति Ex 7.4
Chapter 7 निर्देशांक ज्यामिति Additional Questions
Chapter 8 त्रिकोणमिति का परिचय
Chapter 8 त्रिकोणमिति का परिचय Ex 8.1
Chapter 8 त्रिकोणमिति का परिचय Ex 8.2
Chapter 8 त्रिकोणमिति का परिचय Ex 8.3
Chapter 8 त्रिकोणमिति का परिचय Ex 8.4
Chapter 8 त्रिकोणमिति का परिचय Additional Questions
Chapter 9 त्रिकोणमिति के कुछ अनुप्रयोग
Chapter 9 त्रिकोणमिति के कुछ अनुप्रयोग Ex 9.1
Chapter 9 त्रिकोणमिति के कुछ अनुप्रयोग Additional Questions
Chapter 10 वृत्त
Chapter 10 वृत्त Ex 10.1
Chapter 10 वृत्त Ex 10.2
Chapter 10 वृत्त Additional Questions
Chapter 11 रचनाएँ
Chapter 11 रचनाएँ Ex 11.1
Chapter 11 रचनाएँ Ex 11.2
Chapter 11 रचनाएँ Additional Questions
Chapter 12 वृतों से संबंधित क्षेत्रफल
Chapter 12 वृतों से संबंधित क्षेत्रफल Ex 12.1
Chapter 12 वृतों से संबंधित क्षेत्रफल Ex 12.2
Chapter 12 वृतों से संबंधित क्षेत्रफल Ex 12.3
Chapter 12 वृतों से संबंधित क्षेत्रफल Additional Questions
Chapter 13 पृष्ठीय क्षेत्रफल एवं आयतन
Chapter 13 पृष्ठीय क्षेत्रफल एवं आयतन Ex 13.1
Chapter 13 पृष्ठीय क्षेत्रफल एवं आयतन Ex 13.2
Chapter 13 पृष्ठीय क्षेत्रफल एवं आयतन Ex 13.3
Chapter 13 पृष्ठीय क्षेत्रफल एवं आयतन Ex 13.4
Chapter 13 पृष्ठीय क्षेत्रफल एवं आयतन Additional Questions
Chapter 14 सांख्यिकी
Chapter 14 सांख्यिकी Ex 14.1
Chapter 14 सांख्यिकी Ex 14.2
Chapter 14 सांख्यिकी Ex 14.3
Chapter 14 सांख्यिकी Ex 14.4
Chapter 14 सांख्यिकी Additional Questions
Chapter 15 प्रायिकता
Chapter 15 प्रायिकता Ex 15.1
Chapter 15 प्रायिकता Ex 15.2
Chapter 15 प्रायिकता Additional Questions