...

Chapter 5 – समांतर श्रेढ़ियाँ (Ex – 5.3)

समांतर श्रेढ़ियाँ

प्रश्न 1.
निम्नलिखित समान्तर श्रेढ़ियों का योग ज्ञात कीजिए :
(i) 2, 7, 12, ……., 10 पदों तक
(ii) -37, -33, -29, ….., 12 पदों तक
(iii) 0.6, 1.7, 2.8, ……, 100 पदों तक
(iv) 115,112,110….., 11 पदों तक
हल
(i) दी गई समान्तर श्रेढ़ी : 2, 7, 12, …….., 10 पदों तक
पहला पद (a) = 2, सार्वान्तर (d) = 7 – 2 = 5, पदों की संख्या (n) = 10
n पदों का योग, Sn = n2 [2a + (n – 1)d]
10 पदों तक योग, S10 = 102 [2 × 2 + (10 – 1)5]
= 5[4 + (9 × 5)]
= 5[4 + 45]
= 5 × 49
= 245
अत: 10 पदों तक का योग = 245

(ii) दी गई समान्तर श्रेढ़ी : -37, -33, -29, ….., 12 पदों तक
पहला पद (a) = -37, सार्वान्तर (d) = (-33) – (-37) = -33 + 37 = 4,
पदों की संख्या (n) = 12
पदों का योग, Sn = n2 [2a + (n – 1)d]
12 पदों का योग, S12 = 122 [(2 × -37) + (12 – 1) × 4]
= 6[-74 + (11 × 4)]
= 6[-74 + 44]
= 6 × (-30)
= -180
अत: 12 पदों तक का योग = -180

(iii) दी गई समान्तर श्रेढ़ी : 0.6, 1.7, 2.8, …… , 100 पदों तक
पहला पद (a) = 0.6, सार्वान्तर (d) = 1.7 – 0.6 = 1.1, पदों की संख्या (n) = 100
पदों तक योग, Sn = n2 [2a + (n – 1)d]
100 पदों तक योग, S100 = 1002 [(2 × 0.6) + (100 – 1) × 1.1]
= 50[1.2 + 99 × 1.1]
= 50[1.2 + 108.9]
= 50 × 110.1
= 5505
अत: 100 पदों तक का योग = 5505

प्रश्न 2.
नीचे दिए हुए योगफलों को ज्ञात कीजिए :
(i) 7 + 1012 + 14 +…..+ 84
(ii) 34 + 32 + 30 +………+10
(iii) -5 + (-8) + (-11) + ….. + (-230)
हल

प्रश्न 3.
एक A.P. में,
(i) a = 5, d = 3 और an = 50 दिया है। n और Sn ज्ञात कीजिए।
(ii) a = 7 और a13 = 35 दिया है। d और S13 ज्ञात कीजिए।
(iii) a12 = 37 और d = 3 दिया है। n और S12 ज्ञात कीजिए।
(iv) a3 = 15 और S10 = 125 दिया है। d और a10 ज्ञात कीजिए।
(v) d = 5 और S9 = 75 दिया है। a और a9 ज्ञात कीजिए।
(vi) a = 2, d = 8 और Sn = 90 दिया है। n और an ज्ञात कीजिए।
(vii) a = 8, an = 62 और Sn = 210 दिया है। n और d ज्ञात कीजिए।
(viii) an = 4, d = 2 और Sn = -14 दिया है। n और a ज्ञात कीजिए।
(ix) a = 3, n = 8 और S = 192 दिया है। d ज्ञात कीजिए।
(x) l = 28, S = 144 और कुल 9 पद हैं। a ज्ञात कीजिए।
हल
(i) दिया है, a = 5, d = 3 और an = 50
अनुक्रम A.P. में है और an = 50
a + (n – 1)d = 50
⇒ 5 + (n – 1) 3 = 50
⇒ 5 + 3n – 3 = 50
⇒ 3n = 50 + 3 – 5
⇒ 3n = 48
⇒ n = 16
सूत्र Sn = n2 [2a + (n – 1) d] से,
S16 = 162 [(2 × 5) + (16 – 1) × 3]
= 8 [10 + (15 × 3)]
= 8 [10 + 45]
= 8 × 55
= 440
अत: n = 16 तथा Sn = 440

(ii) दिया है, a = 7 और a13 = 35
यहाँ, a13 = 35

= 132 × 42
= 13 × 21
= 273
अत: d = 73 तथा S13 = 273

(iii) दिया है, a12 = 37 और d = 3
यहाँ, a12 = 37
⇒ a + (12 – 1)d = 37
⇒ a + 11d = 37
⇒ a + 11 x 3 = 37
⇒ a + 33 = 37
⇒ a = 4
तब, S12 = 122 [2a + (12 – 1)d]
= 6 [(2 × 4) + 11 × 3]
= 6[8 + 33]
= 6 × 41
= 246
अत: a = 4 तथा S12 = 246

(iv) दिया है, a3 = 15 और S10 = 125
a3 = 15
a + (3 – 1)d = 15
a + 2d = 15 …… (1)
और S10 = 125
102 [2a + (10 – 1)d] = 125
2a + 9d = 125×210 = 25
2a + 9d = 25 …….(2)
समीकरण (1) को 2 से गुणा करके समीकरण (2) में से घटाने पर,
(2a + 9d) – (2a + 4d) = 25 – 30
5d = -5
d = -1
समीकरण (1) में d का मान रखने पर,
a + 2(-1) = 15
a = 15 + 2 = 17
a10 = a + (10 – 1)d
= 17 + 9 × (-1)
= 17 – 9
= 8
a10 = 8
अतः d = -1 और a10 = 8

(v) दिया है, d = 5 और S9 = 75
S9 = 92 [2a + (9 – 1)d]
= 92 [2a + 8d]
= 9a + 36d
= 9(a + 4d)
परन्तु S9 = 75 दिया है
9(a + 4d) = 75

(viii) दिया है, an = 4, d = 2 और Sn = -14
यहाँ, an = 4
⇒ a + (n – 1)d = 4
⇒ a + (n – 1)2 = 4
⇒ a + 2n – 2 = 4
⇒ a + 2n = 6 ……..(1)
Sn = -14
n2 [2a + (n – 1) 2] = -14
⇒ n[a + n – 1] = -14 ……..(2)
समीकरण (1) से, a = 6 – 2n
तब, समीकरण (2) में a का मान रखने पर,
n(6 – 2n + n – 1) = -14
⇒ n(5 – n) = -14
⇒ 5n – n2 = -14
⇒ n2 – 5n – 14 = 0
⇒ n2 – 7n + 2n – 14 = 0
⇒ n(n – 7) + 2 (n – 7) = 0
⇒ (n – 7) (n + 2) = 0
⇒ n = 7 या n = -2
n एक धन पूर्णांक होना चाहिए।
n = 7
तब, a = 6 – 2n = 6 – (2 × 7) = 6 – 14 = -8
a = -8 तथा n = 7

(ix) दिया है, a = 3, n = 8 और Sn = 192
Sn = n2 [2a + (n – 1) d] से,
⇒ n2 [2a + (n – 1)d] = 192 [∵ S = 192, दिया है]
⇒ 82 [(2 × 3) + (8 – 1) d] = 192
⇒ 4[6 + 7d] = 192
⇒ 24 + 28d = 192
⇒ 28d = 192 – 24 = 168
⇒ d = 6
अत: d = 6

(x) दिया है, अन्तिम पद, l = 28, S = 144 और कुल पद = 9
सूत्र, S = n2 [a + l] से,
⇒ 144 = 92 [a + 28]
⇒ 288 = 9[a + 28]
⇒ 288 = 9a + 252
⇒ 9a = 288 – 252
⇒ 9a = 36
⇒ a = 4
अतः a = 4

प्रश्न 4.
636 योग प्राप्त करने के लिए A.P.: 9, 17, 25,….. के कितने पद लेने चाहिए?
हल
दी गई A.P. : 9, 17, 25, ……..
यहाँ a = 9 तथा d = 17 – 9 = 8
माना पदों की संख्या n है। .
Sn = 636 (दिया है)
⇒ n2 [2a + (n – 1)d] = 636
⇒ n2 [2 × 9 + (n – 1)8] = 636
⇒ n2 [18 + 8n – 8] = 636
⇒ n2 [8n + 10] = 636
⇒ n(4n + 5) = 636
⇒ 4n2 + 5n – 636 = 0
⇒ 4n2 + 53n – 48n – 636 = 0
⇒ n(4n + 53) – 12(4n + 53) = 0
⇒ (4n + 53) (n – 12) = 0
⇒ n – 12 = 0 या 4n + 53 = 0
⇒ n = 12 या −534
परन्तु n एक धन पूर्णांक होना चाहिए।
n = 12
अत: 12 पद लेने चाहिए।

प्रश्न 5.
किसी A.P. का प्रथम पद 5, अन्तिम पद 45 और योग 400 है। पदों की संख्या और सार्वान्तर ज्ञात कीजिए।
हल
दिया है, प्रथम पद (a) = 5, अन्तिम पद (l) = 45 योग (S) = 400
माना पदों की संख्या n है।
सूत्र, S = n2 (a + l) से,
400 = n2 [5 + 45]
400 = n2 × 50
25n = 400
n = 16
अन्तिम पद (l) = 45 परन्तु 16 वाँ पद भी अन्तिम पद है।
a16 = 45
a + (16 – 1)d = 45
5 + 15d = 45
15d = 45 – 5 = 40
d = 4015=83
अतः पदों की संख्या n = 16 तथा सार्वान्तर = 83

प्रश्न 6.
किसी A.P. के प्रथम और अन्तिम पद क्रमशः 17 और 350 हैं। यदि सार्वान्तर 9 है तो इसमें कितने पद हैं और इनका योग क्या है?
हल
दिया है, प्रथम पद (a) = 17 अन्तिम पद (l) = 350 तथा सार्वान्तर (d) = 9
माना दी गई A.P. में पदों की संख्या n हैं।
तब, अन्तिम पद, l = n वाँ पद
l = a + (n – 1)d
350 = 17 + (n – 1)9
350 – 17 = 9n – 9
350 – 17 + 9 = 9n
9n = 342
n = 38
तब, 38 पदों का योग, S38 = n2 (a + l)
= 382 (17 + 350)
= 19 × 367
= 6973
अतः पदों की संख्या = 38 तथा पदों का योग = 6973

प्रश्न 7.
उस A.P. के प्रथम 22 पदों का योग ज्ञात कीजिए, जिसमें d = 7 है और 22 वाँ पद 149 है।
हल
दिया है, d = 7 तथा n = 22
22 वाँ पद = 149
a22 = a + (22 – 1)d = 149
a + 21 × 7 = 149
a + 147 = 149
a = 2
तब, प्रथम 22 पदों का योग, S22 = n2 (a + a22)
= 222 (2 + 149)
= 11 × 151
= 1661
अत: दी गई A.P. के प्रथम 22 पदों का योग = 1661

प्रश्न 8.
उस A.P. के प्रथम 51 पदों का योग ज्ञात कीजिए, जिसके दूसरे और तीसरे पद क्रमश: 14 और 18 हैं।
हल
दिया है, A.P. का दूसरा पद (a2) = 14
तीसरा पद (a3) = 18
सार्वान्तर (d) = a3 – a2 = 18 – 14 = 4
अब पुनः दूसरा पद = 14
a + d = 14
a + 4 = 14 [∵ d = 4]
a = 14 – 4
a = 10
तब, सूत्र Sn = n2 [2a + (n – 1)d] से,
51 पदों का योग, S51 = 512 [2 × 10 + (51 – 1) 4] [∵ n = 51]
= 512 [20 + (50 × 4)]
= 512 [20 + 200]
= 512 × 220
= 51 x 110
= 5610
अत: दी गई A.P. के प्रथम 51 पदों का योग 5610 है।

प्रश्न 9.
यदि किसी A.P. के प्रथम 7 पदों का योग 49 है और प्रथम 17 पदों का योग 289 है, तो इसके प्रथम n पदों का योग ज्ञात कीजिए।
हल
माना A.P. का पहला पद a तथा सार्वान्तर d है।
दिया है, प्रथम 7 पदों का योग (S7) = 49
72 [2a + (7 – 1) d] = 49
72 [2a + 6d] = 49
7(a +3d) = 49
a + 3d = 7 ……..(1)
इसी प्रकार, प्रथम 17 पदों का योग = 289
172 [2a + (17 – 1) d] = 289
172 [2a + 16d] = 289
172 × 2[a + 8d] = 289
a + 8d = 17 …….(2)
समीकरण (2) में से समीकरण (1) को घटाने पर,
a + 8d – (a + 3d) = 17 – 7
5d = 10
d = 2
समीकरण (1) में d का मान रखने पर,
a + 3 × 2 = 7
a + 6 = 7
a = 1
a = 1, तथा d = 2
तब, प्रथम n पदों का योग, Sn = n2 [2a + (n – 1)d]
= n2 [2 × 1 + (n – 1)2]
= n2 [2 + (n – 1)2]
= n2 [2 + 2n – 2]
= n2 (2n)
= n2
अत: प्रथम n पदों का योग = n2

प्रश्न 10.
दर्शाइए कि a1, a2,….., an,…..से एक A.P. बनती है, यदि an नीचे दिए अनुसार परिभाषित है :
(i) an = 3 + 4n
(ii) an = 9 – 5n
साथ ही, प्रत्येक स्थिति में, प्रथम 15 पदों का योग ज्ञात कीजिए।
हल
(i) दिया है, किसी अनुक्रम का n वाँ पद (an) = 3 + 4n
n = 1 रखने पर, पहला पद (a1) = 3 + 4(1) = 7
n = 2 रखने पर, दूसरा पद (a2) = 3 + 4(2) = 11
n = 3 रखने पर, तीसरा पद (a3) = 3 + 4(3) = 15
अत: अभीष्ट अनुक्रम = 7, 11, 15, ……,(3 + 4n) है।
सार्वान्तर = दूसरा पद (a2) – पहला पद (a1) = 11 – 7 = 4
अथवा तीसरा पद (a3) – दूसरा पद (a2) = 15 – 11 = 4
सार्वान्तर नियत है; अत: अनुक्रम एक A.P. है।
तब, प्रथम 15 पदों का योगफल,
अत: अनुक्रम = 7, 11, 15, …… , (3 + 4n) A.P. है तथा योगफल = 525

(ii) दिया है, अनुक्रम का n वा पद (an) = 9 – 5n
n = 1 रखने पर, पहला पद (a1) = 9 – 5(1) = 4
n = 2 रखने पर, दूसरा पद (a2) = 9 – 5(2) = -1
n = 3 रखने पर, तीसरा पद (a3) = 9 – 5(3) = -6
अत: अनुक्रम 4, -1, -6,….., (9 – 5n) है।
पदों का सार्वान्तर (d) = दूसरा पद (a2) – पहला पद (a1) = -1 – (4) = -5
अथवा तीसरा पद (a3) – दूसरा पद (a2) = -6 – (-1) = -5
चूँकि सार्वान्तर नियत है; अत: अनुक्रम एक A.P. है।
तब, प्रथम 15 पदों का योगफल,

अत: अनुक्रम = 4, -1, -6,……,(9 – 5n) A.P. है तथा योगफल = -465

प्रश्न 11.
यदि किसी A.P. के प्रथम n पदों का योग 4n – n2 है, तो इसका प्रथम पद (अर्थात S1) क्या है? प्रथम दो पदों का योग क्या है? दूसरा पद क्या है? इसी प्रकार, तीसरे, 10 वें और nवें पद ज्ञात कीजिए।
हल
दिया है, A.P. के प्रथम n पदों का योगफल, Sn = 4n – n2
n = 1 रखने पर, S1 = (4 × 1) – (1)2 = 3
प्रथम पद (a1) = 3
n = 2 रखने पर,
S2 = (4 × 2) – (2)2 = 8 – 4 = 4
प्रथम दो पदों का योगफल, S2 = 4
प्रथम पद (a1) = 3
दूसरा पद (a2) = S2 – S1 = 4 – 3 = 1
n = 3 रखने पर,
S3 = 4n – n2
= (4 × 3) – (3)2
= 12 – 9
= 3
तीसरा पद (a3) = S3 – S2 = 3 – 4 = -1
n = 9 रखने पर, S9 = 4n – n2 = 4 × 9 – 92 = 36 – 81 = -45
n = 10 रखने पर, S10 = 4n – n2 = 4 × 10 – 102 = 40 – 100 = -60
10 वाँ पद (a10) = S10 – S9 = -60 – (-45) = -60 + 45 = -15
Sn = 4n – n2 और Sn-1 = 4(n – 1) – (n – 1)2 [n के स्थान पर (n – 1) रखने पर]
= (n – 1) [4 – (n – 1)]
= (n – 1)[4 – n + 1]
= (n – 1) (5 – n)
= 5n – n2 – 5 + n
= 6n – n2 – 5
n वाँ पद (an) = Sn – Sn-1
= (4n – n2) – (6n – n2 – 5)
= 4n – n2 – 6n + n2 + 5
= 5 – 2n
अत: S1 = 3, प्रथम दो पदों का योग, S2 = 4, दूसरा पद, a2 = 1, तीसरा पद,(a3) = -1,
10 वाँ पद, a10 = -15 तथा n वाँ पद, an = 5 – 2n

प्रश्न 12.
ऐसे प्रथम 40 धन पूर्णांकों का योग ज्ञात कीजिए जो 6 से विभाज्य हो।
हल
6 से विभाज्य धन पूर्णांक क्रमशः
6, 12, 18, 24, 30, …….., 40 पदों तक
पहला पद (a) = 6, सार्वान्तर (d) = 12 – 6 = 6, तथा n = 40
प्रथम n पदों का योगफल, Sn = n2 [2a + (n – 1) d]
प्रथम 40 पदों का योगफल, S40 = 402 [(2 × 6) + (40 – 1) 6]
= 20 [12 + 39 × 6]
= 20 [12 + 234]
= 20 × 246
= 4920
अत: 6 से विभाज्य प्रथम 40 धन पूर्णांकों का योग = 4920

प्रश्न 13.
8 के प्रथम 15 गुणजों का योग ज्ञात कीजिए।
हल
8 के प्रथम 15 गुणज क्रमश:
8, 16, 24, 32, ………., 15 पदों तक
S = 8 + 16 + 24 + 32 +…….+ 15 × 8
= 8[1 + 2 + 3 + 4 +……+ 15]
= 8[152 (1 + 15] [∵ Sn = n2 [a + l]]
= 8[152 × 16]
= 8 × 120
= 960
अत: 8 के प्रथम 15 गुणजों का योगफल = 960

प्रश्न 14.
0 और 50 के बीच की विषम संख्याओं का योग ज्ञात कीजिए।
हल
0 और 50 के बीच की विषम संख्याएँ क्रमश:
1, 3, 5, 7, ……….., 49
यहाँ a = 1, d = 3 – 1 = 2, तथा an = 49
an = 49
a + (n – 1)d = 49
1 + (n – 1)2 = 49
(n – 1) 2 = 48
(n – 1) = 24
n = 25
A.P.: 1, 3, 5, 7, ………. का 25 पदों तक योगफल

अतः शून्य और 50 के बीच की विषम संख्याओं का योगफल = 625

प्रश्न 15.
निर्माण कार्य से सम्बन्धित किसी ठेके में, एक निश्चित तिथि के बाद कार्य को विलम्ब से पूरा करने के लिए, जुर्माना लगाने का प्रावधान इस प्रकार है : पहले दिन के लिए ₹ 200, दूसरे दिन के लिए ₹ 250, तीसरे दिन के लिए ₹ 300 इत्यादि, अर्थात् प्रत्येक उत्तरोत्तर दिन का जुर्माना अपने से ठीक पहले दिन के जुर्माने से ₹ 50 अधिक है। एक ठेकेदार को जुर्माने के रूप में कितनी राशि अदा करनी
पड़ेगी, यदि वह इस कार्य में 30 दिन का विलम्ब कर देता है?
हल
यहाँ, पहले दिन के विलम्ब के लिए अर्थदण्ड = ₹ 200
दूसरे दिन के विलम्ब के लिए अर्थदण्ड = ₹ 250
तीसरे दिन के विलम्ब के लिए अर्थदण्ड = ₹ 300
………………………..
………………………..
a = 200, d = 250 – 200 = 50, तथा n = 30 दिन
30 दिन के विलम्ब के बाद अर्थदण्ड का योगफल,
S30 = 302 [(2 × 200) + (30 – 1) × 50]
[∵ सूत्र, Sn = n2 [2a + (n – 1)d] से]
= 15[400 + 29 × 50]
= 15[400 + 1450]
= 15 × 1850
= 27750
अत: ठेकेदार को जुर्माने के रूप में ₹ 27750 देने होंगे।

प्रश्न 16.
किसी स्कूल के विद्यार्थियों को उनके समग्र शैक्षिक प्रदर्शन के लिए 7 नकद पुरस्कार देने के लिए ₹ 700 की राशि रखी गई है। यदि प्रत्येक पुरस्कार अपने से ठीक पहले पुरस्कार से ₹ 20 कम है, तो प्रत्येक पुरस्कार का मान ज्ञात कीजिए।
हल
माना पहला पुरस्कार ₹ a है।
दूसरा पुरस्कार (a2) = (a – 20)
तीसरा पुरस्कार (a3) = ₹ (a – 20 – 20) = ₹ (a – 40)
चौथा पुरस्कार (a4) = ₹ (a – 40 – 20) = ₹ (a – 60)
पाँचवाँ पुरस्कार (a5) = ₹ (a – 60 – 20) = ₹ (a – 80)
छठा पुरस्कार (a6) = ₹ (a – 80 – 20) = ₹ (a – 100)
सातवा पुरस्कार (a7) = ₹ (a – 100 – 20) = ₹ (a – 120)
कुल पुरस्कारों की धनराशि = a + a2 + a3 + a4 + a5 + a6 + a7
= a + (a – 20) + (a – 40) + (a – 60) + (a – 80) + (a – 100) + (a – 120)
= 7a – 420
प्रश्नानुसार, यह धनराशि ₹ 700 है।
7a – 420 = 700
7a = 700 + 420
7a = 1120
a = 160
पहला पुरस्कार = ₹ 160, शेष पुरस्कार क्रम से ₹ 20 – 20 कम है।
अतः पुरस्कार ₹ 160, ₹ 140, ₹ 120, ₹ 100, ₹ 80, ₹ 60, ₹ 40 हैं।

प्रश्न 17.
एक स्कूल के विद्यार्थियों ने वायु प्रदूषण कम करने के लिए स्कूल के अन्दर और बाहर पेड़ लगाने के बारे में सोचा। यह निर्णय लिया गया कि प्रत्येक कक्षा का प्रत्येक अनुभाग अपनी कक्षा की संख्या के बराबर पेड़ लगाएगा। उदाहरणार्थ, कक्षा I का एक अनुभाग 1पेड़ लगाएगा, कक्षा II का एक अनुभाग 2 पेड़ लगाएगा, कक्षा III का एक अनुभाग 3 पेड़ लगाएगा, इत्यादि और ऐसा कक्षा XII तक के लिए चलता रहेगा। प्रत्येक कक्षा के तीन अनुभाग हैं। इस स्कूल के विद्यार्थियों द्वारा लगाए गए कुल पेड़ों की संख्या कितनी होगी?
हल
प्रत्येक कक्षा में तीन अनुभाग हैं।
कक्षा I द्वारा लगाए गए कुल पेड़ = 3 × 1 = 3
कक्षा II द्वारा लगाए गए कुल पेड़ = 3 × 2 = 6
कक्षा III द्वारा लगाए गए कुल पेड़ = 3 × 3 = 9
कक्षा IV द्वारा लगाए गए कुल पेड़ = 3 × 4 = 12
………………………..
………………………..
तब, अनुक्रम A.P. : 3, 6, 9, 12, ………. बनता है।
a = 3, तथा d = 6 – 3 = 3
तब, कक्षा XII तक के कुल विद्यार्थियों द्वारा लगाए गए पेड़ों का योगफल
सूत्र, Sn = n2 [2a + (n – 1)d] से,
S12 = 122 [(2 × 3) + (12 – 1) × 3]
= 6[6 + 33]
= 6 × 39
= 234
अत: स्कूल के विद्यार्थियों द्वारा लगाए कुल पेड़ = 234

प्रश्न 18.
केन्द्र A से प्रारम्भ करते हुए, बारी-बारी से केन्द्रों A और B को लेते हुए, त्रिज्याओं 0.5 cm, 1.0 cm, 1.5 cm, 2.0 cm, ….. वाले उत्तरोत्तर अर्द्धवृत्तों को खींचकर एक सर्पिल (spiral) बनाया गया है, जैसा कि आकृति में दर्शाया गया है। तेरह क्रमागत अर्द्धवृत्तों से बने इस सर्पिल की कुल लम्बाई क्या है?(π = 227) लीजिए। [संकेत : क्रमशः केन्द्रों A, B, A, B… वाले अर्धवृत्तों की लम्बाइयाँ l1, l2, l3, l4 हैं।

हल
पहले अर्द्धवृत्त की त्रिज्या, r1 = 0.5 cm
दूसरे अर्द्धवृत्त की त्रिज्या, r2 = 1.0 cm
तीसरे अर्द्धवृत्त की त्रिज्या, r3 = 1.5 cm
चौथे अर्द्धवृत्त की त्रिज्या, r4 = 2.0 cm
……………………………….
……………………………….
13 वें अर्द्धवृत्त की त्रिज्या, r13 = ?
r1 = a = 0.5 cm, d = 1.0 – 0.5 = 0.5 cm तथा n = 13
r13 = a + (n – 1) d = 0.5 + (13 – 1) × 0.5
= 0.5 + 12 × 0.5
= 0.5 + 6.0
= 6.5
अर्द्धवृत्तों की वृत्तीय परिधियाँ :
πr1, πr2, πr3, ………., πr13
13 क्रमागत अर्द्धवृत्तों से बने सर्पिल की लम्बाई

अत: सर्पिल की लम्बाई = 143 cm

प्रश्न 19.
200 लट्ठों (logs) को ढेरी के रूप में इस प्रकार रखा जाता है : सबसे नीचे वाली पंक्ति में 20 लढे, उससे अगली पंक्ति में 19 लटे, उससे अगली पंक्ति में 18 लट्टे, इत्यादि जैसा कि चित्र में प्रदर्शित है। ये 200 लटे कितनी पंक्तियों में रखे हुए हैं तथा सबसे ऊपरी पंक्ति में कितने लढे हैं?

हल
दिया है, सबसे निचली पंक्ति में 20 लटे हैं।
अर्थात् नीचे से प्रारम्भ कर प्रथम पंक्ति में = 20 लढे
दूसरी पंक्ति में = 19 लढे
तीसरी पंक्ति में = 18 लढे
चौथी पंक्ति में = 17 लढे ……… इत्यादि
तब, एक A.P. बनती है : 20, 19, 18, 17, …..
a = 20, तथा d = 19 – 20 = -1
माना पंक्तियों की संख्या n हैं।

यदि n = 25, तो an = a + (n – 1)d
= 20 + (25 – 1) × (-1)
= 20 – 24
= -4
अत: n = 25 स्वीकार्य नहीं है।
तब, n = 16 से,
an = a + (n – 1) d
= 20 + (16 – 1) × -1
= 20 + (15 × (-1))
= 20 – 15
= 5
अत: कुल पंक्तियाँ = 16 और सबसे ऊपर की पंक्ति में लट्ठों की संख्या = 5

प्रश्न 20.
एक आलू दौड़ (potato race) में, प्रारम्भिक स्थान पर एक बाल्टी रखी हुई है, जो पहले आलू से 5 मीटर की दूरी पर है तथा अन्य आलुओं को एक सीधी रेखा में परस्पर 3 m की दूरियों पर रखा गया है। इस रेखा पर 10 आलू रखे गए हैं। जैसा कि चित्र में दिखाया गया है।

प्रत्येक प्रतियोगी बाल्टी से चलना प्रारम्भ करती है, निकटतम आलू को उठाती है, उसे लेकर वापस आकर दौड़कर बाल्टी में डालती है, दूसरा आलू उठाने के लिए वापस दौड़ती है, उसे उठाकर वापस बाल्टी में डालती है और वह ऐसा तब तक करती रहती है, जब तक सभी आलू बाल्टी में न आ जाएँ। इसमें प्रतियोगी को कुल कितनी दूरी दौड़नी पड़ेगी?
[संकेत : पहले और दूसरे आलुओं को उठाकर बाल्टी में डालने तक दौड़ी गई दूरी = 2 × 5 + 2 × (5 + 3) है।]
हल
पहले आलू की बाल्टी से दूरी = 5 m
दूसरे आलू की बाल्टी से दूरी = (5 + 3) = 8 m
तीसरे आलू की बाल्टी से दूरी = (8 + 3) = 11 m
चौथे आलू की बाल्टी से दूरी = (11 + 3) = 14 m
इस प्रकार बाल्टी से आलुओं की दूरी A.P. में है जिसका
पहला पद (a) = 5 m तथा सार्वान्तर (d) = 3 m
एक बार बाल्टी से चलकर आलू को उठाना होता है और उसे फिर वापस बाल्टी में डालना पड़ता है।
आलू बाल्टी में डालने के लिए चली दूरियाँ :
= 2 × 5 m, 2 × 8 m, 2 × 11 m, 2 × 14 m, …….
= 10 m, 16 m, 22 m, 28 m, …………
यहाँ a = 10, d = 16 – 10 = 6, तथा n = 10
n आलुओं को उठाकर बाल्टी में डालने के लिए चली दूरी = n2 [2a + (n – 1)d]
10 आलुओं की रेस में चली दूरी = 102 [2 × 10 + (10 – 1) × 6]
= 5[20 + (9 × 6)]
= 5[20 + 54]
= 5[74]
= 370 m
अतः प्रतियोगी द्वारा चली दूरी = 370 m

You must watch….

Chapter 1 वास्तविक संख्याएँ

Chapter 1 वास्तविक संख्याएँ Ex 1.1
Chapter 1 वास्तविक संख्याएँ Ex 1.2
Chapter 1 वास्तविक संख्याएँ Ex 1.3
Chapter 1 वास्तविक संख्याएँ Ex 1.4
Chapter 1 वास्तविक संख्याएँ Additional Questions

Chapter 2 बहुपद

Chapter 2 बहुपद Ex 2.1
Chapter 2 बहुपद Ex 2.2
Chapter 2 बहुपद Ex 2.3
Chapter 2 बहुपद Ex 2.4
Chapter 2 बहुपद Additional Questions

Chapter 3 दो चरों वाले रैखिक समीकरण युग्म

Chapter 3 दो चरों वाले रैखिक समीकरण युग्म Ex 3.1
Chapter 3 दो चरों वाले रैखिक समीकरण युग्म Ex 3.2
Chapter 3 दो चरों वाले रैखिक समीकरण युग्म Ex 3.3
Chapter 3 दो चरों वाले रैखिक समीकरण युग्म Ex 3.4
Chapter 3 दो चरों वाले रैखिक समीकरण युग्म Ex 3.5
Chapter 3 दो चरों वाले रैखिक समीकरण युग्म Ex 3.6
Chapter 3 दो चरों वाले रैखिक समीकरण युग्म Ex 3.7
Chapter 3 दो चरों वाले रैखिक समीकरण युग्म Additional Questions

Chapter 4 द्विघात समीकरण

Chapter 4 द्विघात समीकरण Ex 4.1
Chapter 4 द्विघात समीकरण Ex 4.2
Chapter 4 द्विघात समीकरण Ex 4.3
Chapter 4 द्विघात समीकरण Ex 4.4
Chapter 4 द्विघात समीकरण Additional Questions

Chapter 5 समांतर श्रेढ़ियाँ

Chapter 5 समांतर श्रेढ़ियाँ Ex 5.1
Chapter 5 समांतर श्रेढ़ियाँ Ex 5.2
Chapter 5 समांतर श्रेढ़ियाँ Ex 5.4
Chapter 5 समान्तर श्रेढ़ियाँ Additional Questions

Chapter 6 त्रिभुज

Chapter 6 त्रिभुज Ex 6.1
Chapter 6 त्रिभुज Ex 6.2
Chapter 6 त्रिभुज Ex 6.3
Chapter 6 त्रिभुज Ex 6.4
Chapter 6 त्रिभुज Ex 6.5
Chapter 6 त्रिभुज Ex 6.6
Chapter 6 त्रिभुज Additional Questions

Chapter 7 निर्देशांक ज्यामिति

Chapter 7 निर्देशांक ज्यामिति Ex 7.1
Chapter 7 निर्देशांक ज्यामिति Ex 7.2
Chapter 7 निर्देशांक ज्यामिति Ex 7.3
Chapter 7 निर्देशांक ज्यामिति Ex 7.4
Chapter 7 निर्देशांक ज्यामिति Additional Questions

Chapter 8 त्रिकोणमिति का परिचय

Chapter 8 त्रिकोणमिति का परिचय Ex 8.1
Chapter 8 त्रिकोणमिति का परिचय Ex 8.2
Chapter 8 त्रिकोणमिति का परिचय Ex 8.3
Chapter 8 त्रिकोणमिति का परिचय Ex 8.4
Chapter 8 त्रिकोणमिति का परिचय Additional Questions

Chapter 9 त्रिकोणमिति के कुछ अनुप्रयोग

Chapter 9 त्रिकोणमिति के कुछ अनुप्रयोग Ex 9.1
Chapter 9 त्रिकोणमिति के कुछ अनुप्रयोग Additional Questions

Chapter 10 वृत्त

Chapter 10 वृत्त Ex 10.1
Chapter 10 वृत्त Ex 10.2
Chapter 10 वृत्त Additional Questions

Chapter 11 रचनाएँ

Chapter 11 रचनाएँ Ex 11.1
Chapter 11 रचनाएँ Ex 11.2
Chapter 11 रचनाएँ Additional Questions

Chapter 12 वृतों से संबंधित क्षेत्रफल

Chapter 12 वृतों से संबंधित क्षेत्रफल Ex 12.1
Chapter 12 वृतों से संबंधित क्षेत्रफल Ex 12.2
Chapter 12 वृतों से संबंधित क्षेत्रफल Ex 12.3
Chapter 12 वृतों से संबंधित क्षेत्रफल Additional Questions

Chapter 13 पृष्ठीय क्षेत्रफल एवं आयतन

Chapter 13 पृष्ठीय क्षेत्रफल एवं आयतन Ex 13.1
Chapter 13 पृष्ठीय क्षेत्रफल एवं आयतन Ex 13.2
Chapter 13 पृष्ठीय क्षेत्रफल एवं आयतन Ex 13.3
Chapter 13 पृष्ठीय क्षेत्रफल एवं आयतन Ex 13.4
Chapter 13 पृष्ठीय क्षेत्रफल एवं आयतन Ex 13.5
Chapter 13 पृष्ठीय क्षेत्रफल एवं आयतन Additional Questions

Chapter 14 सांख्यिकी

Chapter 14 सांख्यिकी Ex 14.1
Chapter 14 सांख्यिकी Ex 14.2
Chapter 14 सांख्यिकी Ex 14.3
Chapter 14 सांख्यिकी Ex 14.4
Chapter 14 सांख्यिकी Additional Questions

Chapter 15 प्रायिकता

Chapter 15 प्रायिकता Ex 15.1
Chapter 15 प्रायिकता Ex 15.2
Chapter 15 प्रायिकता Additional Questions

Leave a Comment

Your email address will not be published. Required fields are marked *

Seraphinite AcceleratorOptimized by Seraphinite Accelerator
Turns on site high speed to be attractive for people and search engines.