Chapter 6 – त्रिभुज (Additional Questions)

त्रिभुज

बहुविकल्पीय प्रश्न

प्रश्न 1.
आकृति में, O दो जीवाओं को AB और CD का प्रतिच्छेद बिन्दु इस प्रकार है कि OB = OD है, तो त्रिभुज OAC और ODB हैं

(i) समबाहु परन्तु समरूप नहीं
(ii) समद्धिबाहु परन्तु समरूप नहीं
(iii) समबाहु और समरूप
(iv) समद्विबाहु और समरूप
हल
(iv) समद्विबाहु और समरूप

प्रश्न 2.
एक त्रिभुज ABC की भुजाओं AB और AC पर क्रमशः बिन्दु D और E इस प्रकार स्थित हैं कि AD = 2 cm, BD = 3 cm, BC = 7.5 cm और DE || BC है। तब, DE की लम्बाई (cm में) है-
(i) 2.5
(ii) 3
(iii) 5
(iv) 6
हल
(ii) 3

प्रश्न 3.
आकृति में, ∠BAC = 90° और AD ⊥ BC हैं। तब,

(i) BD . CD = BC2
(ii) AB . AC = BC2
(iii) BD . CD = AD2
(iv) AB . AC = AD2
हल
(iii) BD . CD = AD2

प्रश्न 4.
एक समचतुर्भुज के विकर्णों की लम्बाइयाँ 16 cm और 12 cm हैं। तब, इस समचतुर्भुज की भुजा की लम्बाई है
(i) 9 cm
(ii) 10 cm
(iii) 8 cm
(iv) 20 cm
हल
(ii) 10 cm

प्रश्न 5.
यदि ∆ABC ~ ∆EDF और ∆ABC ~ ∆DEF के समरूप नहीं है, तो निम्नलिखित में कौन सत्य नहीं है?
(i) BC . EF = AC . FD
(ii) AB . EF = AC · DE
(iii) BC . DE = AB . EF
(iv) BC . DE = AB . FD
हल
(ii) AB . EF = AC . DE

प्रश्न 6.
यदि दो त्रिभजों ABC और PQR में ABQR=BCPR=CAPQ है तो
(i) ∆PQR ~ ∆CAB
(ii) ∆PQR ~ ∆ABC
(iii) ∆CBA ~ ∆PQR
(iv) ∆BCA ~ ∆PQR
हल
(i) ∆PQR ~ ∆CAB

प्रश्न 7.
आकृति में, दो रेखाखण्ड AC और BD परस्पर बिन्दु P पर इस प्रकार प्रतिच्छेद करते हैं कि PA = 6 cm, PB = 3 cm, PC = 2.5 cm, PD = 5 cm, ∠APB = 50° और ∠CDP = 30° है तब, ∠PBA बराबर है

(i) 50°
(ii) 30°
(iii) 60°
(iv) 100°
हल
(iv) 100°

प्रश्न 8.
त्रिभुजों ABC और DEF में, ∠B = ∠E, ∠F = ∠C तथा AB = 3DE है। तब दोनों त्रिभुज हैं
(i) सर्वांगसम परन्तु समरूप नहीं
(ii) समरूप परन्तु सर्वांगसम नहीं
(iii) न तो सर्वांगसम और न ही समरूप
(iv) सर्वांगसम और समरूप दोनों
हल
(ii) समरूप परन्तु सर्वांगसम नहीं

प्रश्न 9.
यह दिया है कि BCQR=13 के साथ ∆ABC ~ ∆PQR है। तब ar(PQR)ar(BCA) बराबर है
(i) 9
(ii) 3
(iii) 13
(iv) 19
हल
(i) 9

प्रश्न 10.
∆ABC ~ ∆DFE, ∠A = 30°, ∠C = 50°, AB = 5 cm, AC = 8 cm और DF = 7.5 cm दिया हुआ है। तब, निम्नलिखित सत्य है
(i) DE = 12 cm, ∠F = 50°
(ii) DE = 12 cm, ∠F = 100°
(iii) EF = 12 cm, ∠D = 100°
(iv) EF = 12 cm, ∠D = 30°
हल
(ii) DE = 12 cm, ∠F = 100°

प्रश्न 11.
यदि त्रिभुज ABC और DEF में, ABDE=BCFD है, तो ये समरूप होंगे, जब
(i) ∠B = ∠E
(ii) ∠A = ∠D
(iii) ∠B = ∠D
(iv) ∠A = ∠F
हल
(iii) ∠B = ∠D

प्रश्न 12.
यदि ∆ABC ~ ∆QRP, ar(ABC)ar(PQR)=94, AB = 18 cm और BC = 15 cm है, तो PR बराबर है
(i) 10 cm
(ii) 12 cm
(iii) 203 cm
(iv) 8 cm
हल
(i) 10 cm

प्रश्न 13.
यदि ∆PQR की एक भुजा PQ पर S एक ऐसा बिन्दु है कि PS = QS = RS है, तो
(i) PR . QR = RS2
(ii) QS2 + RS2 = QR2
(iii) PR2 + QR2 = PQ2
(iv) PS2 + RS2 = PR2
हल
(iii) PR2 + QR2 = PQ2

अतिलघु उत्तरीय प्रश्न

प्रश्न 1.
दिए गए चित्र में, DE, BC के समान्तर है तथा AD = 2 cm, BD = 3 cm , त्रिभुज ABC तथा त्रिभुज ADE के क्षेत्रफल में अनुपात ज्ञात कीजिए।

हल

प्रश्न 2.
चित्र में, EF || BC, यदि AE : BE = 4 : 1 और CF = 1.5 cm हो, तो AF की लम्बाई क्या होगी?

हल
EF || BC
AEEB=AFCF
⇒ 41=AF1.5
⇒ AF = 4 × 1.5 = 6.0 cm

प्रश्न 3.
दो समरूप त्रिभुजों की भुजाएँ 4 : 5 के अनुपात में हैं। उनके क्षेत्रफलों का अनुपात ज्ञात कीजिए।
हल
क्षेत्रफलों का अनुपात = संगत भुजाओं के वर्गों का अनुपात = (4)2 : (5)2 = 16 : 25

प्रश्न 4.
आकृति में, OAOC=ODOB है। ∆AOD ~ ∆COB सिद्ध करने के लिए किस अन्य सूचना की आवश्यकता होगी?

हल
दिया है, OAOC=ODOB
आकृति से, ∠AOD = ∠BOC (शीर्षाभिमुख कोण)
अतः ∆AOD ~ ∆COB
अर्थात् ∆AOD ~ ∆COB सिद्ध करने के लिए किसी भी अन्य सूचना की आवश्यकता नहीं है।

प्रश्न 5.
बौधायन प्रमेय का कथन लिखिए।
हल
प्रमेय : समकोण त्रिभुज में (कर्ण)2 = (आधार)2 + (लम्ब)2 होता है।

प्रश्न 6.
सिद्ध कीजिए कि भुजाएँ 13 cm, 12 cm व 5 cm एक समकोण त्रिभुज की भुजाएँ हैं।
हल
माना a = 13 cm, b = 12 cm तथा c = 5 cm
तब, a2 = (13)2 = 169
तथा b2 + c2 = (12)2 + (5)2 = 144 + 25 = 169
∴ a2 = b2 + c2
अर्थात् (सबसे बड़ी भुजा)2 = शेष दोनों भुजाओं के वर्गों का योग
अतः दी गई भुजाएँ एक समकोण त्रिभुज की भुजाएँ हैं।
इति सिद्धम्

प्रश्न 7.
आकृति में, DE || BC तो EC ज्ञात कीजिए।

हल
∆ABC में, DE || BC
Bihar Board Class 10 Maths Solutions Chapter 6 त्रिभुज Additional Questions VSQ 7.1
अत: EC की लम्बाई = 4 cm

लघु उत्तरीय प्रश्न

प्रश्न 1.
आकृति में, ∠A = 90°, BD = DC तो पाइथागोरस प्रमेय से सिद्ध कीजिए AD = 12 BC

हल
दिया है : ∆ABC में, ∠A = 90°
BD = DC
AD ⊥ BC
सिद्ध करना है : AD = 12 BC
उपपत्ति : ∆ABC में, ∠A = 90°
तथा AD ⊥ BC
AD2 = BD . DC = BD . BD = BD2 (∵ DC = BD)
⇒ AD = BD = 12 BC
इति सिद्धम्

प्रश्न 2.
यदि ∆ABC में DE || BC और ADDB=23 तथा AC = 18 cm हों तो AE ज्ञात कीजिए।
हल

प्रश्न 3.
दी गई आकृति में DE || AB है। x का मान ज्ञात कीजिए।

हल
∆ABC में, DE || AB
CE : EB = CD : DA
CEEB=CDDA
⇒ x3x+4=x+38x+9
⇒ (8x + 9) x = (3x + 4) (x + 3)
⇒ 8x2 + 9x = 3x2 + 9x + 4x + 12
⇒ 8x2 + 9x – 3x2 – 9x – 4x – 12 = 0
⇒ 5x2 – 4x – 12 = 0
⇒ 5x2 – (10 – 6)x – 12 = 0
⇒ 5x2 – 10x + 6x – 12 = 0
⇒ 5x(x – 2) + 6(x – 2) = 0
⇒ (x – 2)(5x + 6) = 0
यदि 5x + 6 = 0 हो, तो x = −65 जो कि मान्य नहीं है।
तब, यदि x – 2 = 0 हो, तो x = 2
अतः x का मान = 2.

प्रश्न 4.
दी गई आकृति में ABCD एक समचतुर्भुज है तो सिद्ध कीजिए कि 4AB2 = AC2 + BD2

हल
दिया है : ABCD एक समचतुर्भुज है जिसमें AB, BC, CD व DA चतुर्भुज की भुजाएँ हैं AC व BD विकर्ण हैं।
सिद्ध करना है : 4AB2 = AC2 + BD2
उपपत्ति : समचतुर्भुज की भुजाएँ लम्बाई में समान होती हैं और उसके विकर्ण परस्पर समकोण पर एक-दूसरे को अर्धित करते हैं।
AB = BC = CD = DA ……(1)
AO = OC तथा BO = OD
∆AOB, ∆BOC, ∆COD व ∆DOA समकोण त्रिभुज हैं।
समकोण ∆AOB में, ∠AOB = 90°
AB2 = AO2 + BO2
⇒ AB2 = (AC2)2+(BD2)2 (∵ AO, AC का तथा BO, BD का अर्धक है)
⇒ AB2 = AC2+BD24
⇒ 4AB2 = AC2 + BD2
इति सिद्धम्

प्रश्न 5.
दो समरूप ∆ABC तथा ∆PQR के क्षेत्रफल का अनुपात 9 : 16 है। यदि BC = 4.5 m, तो QR की लम्बाई ज्ञात कीजिए।
हल
दो समरूप त्रिभुजों के क्षेत्रफल, त्रिभुजों की संगत भुजाओं के वर्गों के अनुपात में होते हैं।

अतः QR की लम्बाई = 6.0 cm

प्रश्न 6.
चित्र में, ∆OSR ≅ ∆OPQ एवं SR || PQ यदि OSR = 50° और ∠ROQ = 120° तो ∠QPO का मान ज्ञात कीजिए।

हल
चित्र में, ∆OSR ≅ ∆OPQ एवं SR || PQ, SQ एक ऋजु रेखा है और 120° उससे OR बिन्दु O पर मिलती है, जिससे ∠SOR तथा ∠QOR एक रैखिक युग्म कोण है।
∠SOR + ∠QOR = 180°
⇒ ∠SOR + 120° = 180°
⇒ ∠SOR = 180° – 120° = 60°
तब ∆SOR में, ∠RSO + ∠SOR + ∠ORS = 180°
50° + 60° + ∠ORS = 180°
⇒ ∠ORS = 180° – 50° – 60°
⇒ ∠ORS = 180° – 110°
⇒ ∠ORS = 70°
∵ ∆SOR ~ ∆QPO
∴ ∠ORS = ∠QPO = 70°
∴ ∠QPO = 70°

प्रश्न 7.
आकृति में, AD ⊥ BC है। सिद्ध कीजिए कि AB2 + CD2 = BD2 + AC2

हल
∆ABD में, ∠BDA = 90°,
अत: बौधायन प्रमेय से,
AB2 = BD2 + DA2 ……(1)
तथा इसी प्रकार ∆ADC में,
AC2 = CD2 + DA2
⇒ DA2 = AC2 – CD2
समीकरण (1) में DA2 का मान रखने पर,
AB2 = BD2 + AC2 – CD2
⇒ AB2 + CD2 = BD2 + AC2
इति सिद्धम्

दीर्घ उत्तरीय प्रश्न

प्रश्न 1.
AQ तथा BP एक समकोण त्रिभुज ABC की माध्यिकाएँ हैं तथा त्रिभुज का कोण C समकोण है। सिद्ध कीजिए कि 4(AQ2 + BP2) = 5AB2

हल
दिया है : ∆ABC में ∠C = 90°, त्रिभुज की BP और AQ दो माध्यिकाएँ हैं जो क्रमश: CA को बिन्दु P पर तथा BC को बिन्दु Q पर मिलती
हैं।
सिद्ध करना है : 4(AQ2 + BP2) = 5AB2
उपपत्ति : BP, CA की माध्यिका है।
PC = 12 CA
⇒ 2PC = CA
⇒ 4PC2 = CA2 ……(1)
AQ, BC की माध्यिका है।
CQ = 12 BC
⇒ 2CQ = BC
⇒ 4CQ2 = BC2 ………(2)
समकोण त्रिभुज ABC में, AB2 = BC2 + CA2 ……(3)
समकोण त्रिभुज BPC में, BP2 = PC2 + BC2 …….(4)
समकोण त्रिभुज ACQ में, AQ2 = CA2 + CQ2 ………(5)
समीकरण (4) व (5) को जोड़ने पर,
AQ2 + BP2 = PC2 + CQ2 + CA2 + BC2 ……(6)
समीकरण (6) को 4 से गुणा करने पर,
4(AQ2 + BP2) = 4PC2 + 4CQ2 + 4BC2 + 4CA2
⇒ 4(AQ2 + BP2) = CA2 + BC2 + 4BC2 + 4CA2 [समीकरण (1) व (2) से]
⇒ 4(AQ2 + BP2) = 5BC2 + 5CA2
⇒ 4(AQ2 + BP2) = 5(BC2 + CA2)
⇒ 4(AQ2 + BP2) = 5AB2 [समीकरण (3) से]
अत: 4(AQ2 + BP2) = 5AB2
इति सिद्धम्

प्रश्न 2.
आकृति में, ∠ACB = 90° तथा AD ⊥ AB है। सिद्ध कीजिए कि AB2AD2=BCCD

हल
दिया है : ∆ABD में ∠DAB = 90° तथा AC ⊥ BD
सिद्ध करना है : AB2AD2=BCCD
उपपत्ति : ∆ABD में, ∠DAB = 90°
∆ABD समकोण त्रिभुज है जिसमें AC ⊥ BD
∆ABC ~ ∆DBA और ∆DAC ~ ∆DRA तथा ∆ABC ~ ∆DAC
∵ ∆ABC ~ ∆DRA
∆ABC तथा ∆DBA की तुलना करने पर,
BCAB=ABBD
⇒ AB2 = BC × BD …….(1)
∵ ∆DAC ~ ∆DBA
∴ ∆DAC तथा ∆DBA की तुलना करने पर,
ADBD=CDAD
⇒ AD2 = BD × CD …….(2)
समीकरण (1) को (2) से भाग देने पर,
AB2AD2=BC×BDBD×CD
⇒ AB2AD2=BCCD
इति सिद्धम्

You must watch….

Chapter 1 वास्तविक संख्याएँ

Chapter 1 वास्तविक संख्याएँ Ex 1.1
Chapter 1 वास्तविक संख्याएँ Ex 1.2
Chapter 1 वास्तविक संख्याएँ Ex 1.3
Chapter 1 वास्तविक संख्याएँ Ex 1.4
Chapter 1 वास्तविक संख्याएँ Additional Questions

Chapter 2 बहुपद

Chapter 2 बहुपद Ex 2.1
Chapter 2 बहुपद Ex 2.2
Chapter 2 बहुपद Ex 2.3
Chapter 2 बहुपद Ex 2.4
Chapter 2 बहुपद Additional Questions

Chapter 3 दो चरों वाले रैखिक समीकरण युग्म

Chapter 3 दो चरों वाले रैखिक समीकरण युग्म Ex 3.1
Chapter 3 दो चरों वाले रैखिक समीकरण युग्म Ex 3.2
Chapter 3 दो चरों वाले रैखिक समीकरण युग्म Ex 3.3
Chapter 3 दो चरों वाले रैखिक समीकरण युग्म Ex 3.4
Chapter 3 दो चरों वाले रैखिक समीकरण युग्म Ex 3.5
Chapter 3 दो चरों वाले रैखिक समीकरण युग्म Ex 3.6
Chapter 3 दो चरों वाले रैखिक समीकरण युग्म Ex 3.7
Chapter 3 दो चरों वाले रैखिक समीकरण युग्म Additional Questions

Chapter 4 द्विघात समीकरण

Chapter 4 द्विघात समीकरण Ex 4.1
Chapter 4 द्विघात समीकरण Ex 4.2
Chapter 4 द्विघात समीकरण Ex 4.3
Chapter 4 द्विघात समीकरण Ex 4.4
Chapter 4 द्विघात समीकरण Additional Questions

Chapter 5 समांतर श्रेढ़ियाँ

Chapter 5 समांतर श्रेढ़ियाँ Ex 5.1
Chapter 5 समांतर श्रेढ़ियाँ Ex 5.2
Chapter 5 समांतर श्रेढ़ियाँ Ex 5.3
Chapter 5 समांतर श्रेढ़ियाँ Ex 5.4
Chapter 5 समान्तर श्रेढ़ियाँ Additional Questions

Chapter 6 त्रिभुज

Chapter 6 त्रिभुज Ex 6.1
Chapter 6 त्रिभुज Ex 6.2
Chapter 6 त्रिभुज Ex 6.3
Chapter 6 त्रिभुज Ex 6.4
Chapter 6 त्रिभुज Ex 6.5
Chapter 6 त्रिभुज Ex 6.6

Chapter 7 निर्देशांक ज्यामिति

Chapter 7 निर्देशांक ज्यामिति Ex 7.1
Chapter 7 निर्देशांक ज्यामिति Ex 7.2
Chapter 7 निर्देशांक ज्यामिति Ex 7.3
Chapter 7 निर्देशांक ज्यामिति Ex 7.4
Chapter 7 निर्देशांक ज्यामिति Additional Questions

Chapter 8 त्रिकोणमिति का परिचय

Chapter 8 त्रिकोणमिति का परिचय Ex 8.1
Chapter 8 त्रिकोणमिति का परिचय Ex 8.2
Chapter 8 त्रिकोणमिति का परिचय Ex 8.3
Chapter 8 त्रिकोणमिति का परिचय Ex 8.4
Chapter 8 त्रिकोणमिति का परिचय Additional Questions

Chapter 9 त्रिकोणमिति के कुछ अनुप्रयोग

Chapter 9 त्रिकोणमिति के कुछ अनुप्रयोग Ex 9.1
Chapter 9 त्रिकोणमिति के कुछ अनुप्रयोग Additional Questions

Chapter 10 वृत्त

Chapter 10 वृत्त Ex 10.1
Chapter 10 वृत्त Ex 10.2
Chapter 10 वृत्त Additional Questions

Chapter 11 रचनाएँ

Chapter 11 रचनाएँ Ex 11.1
Chapter 11 रचनाएँ Ex 11.2
Chapter 11 रचनाएँ Additional Questions

Chapter 12 वृतों से संबंधित क्षेत्रफल

Chapter 12 वृतों से संबंधित क्षेत्रफल Ex 12.1
Chapter 12 वृतों से संबंधित क्षेत्रफल Ex 12.2
Chapter 12 वृतों से संबंधित क्षेत्रफल Ex 12.3
Chapter 12 वृतों से संबंधित क्षेत्रफल Additional Questions

Chapter 13 पृष्ठीय क्षेत्रफल एवं आयतन

Chapter 13 पृष्ठीय क्षेत्रफल एवं आयतन Ex 13.1
Chapter 13 पृष्ठीय क्षेत्रफल एवं आयतन Ex 13.2
Chapter 13 पृष्ठीय क्षेत्रफल एवं आयतन Ex 13.3
Chapter 13 पृष्ठीय क्षेत्रफल एवं आयतन Ex 13.4
Chapter 13 पृष्ठीय क्षेत्रफल एवं आयतन Ex 13.5
Chapter 13 पृष्ठीय क्षेत्रफल एवं आयतन Additional Questions

Chapter 14 सांख्यिकी

Chapter 14 सांख्यिकी Ex 14.1
Chapter 14 सांख्यिकी Ex 14.2
Chapter 14 सांख्यिकी Ex 14.3
Chapter 14 सांख्यिकी Ex 14.4
Chapter 14 सांख्यिकी Additional Questions

Chapter 15 प्रायिकता

Chapter 15 प्रायिकता Ex 15.1
Chapter 15 प्रायिकता Ex 15.2
Chapter 15 प्रायिकता Additional Questions

Leave a Comment

Your email address will not be published. Required fields are marked *