Chapter 6 – त्रिभुज (Ex – 6.6)

त्रिभुज

प्रश्न 1.
दी गई आकृति में PS कोण QPR का समद्विभाजक है। सिद्ध कीजिए कि QSSR=PQPR है।

हल
दिया है : ∆PQR में PS कोण QPR का समद्विभाजक है।
सिद्ध करना है : QSSR=PQPR
रचना : बिन्दु R से रेखा RT || PS खींची जो बढ़ाई गई QP को T पर प्रतिच्छेद करे।
उपपत्ति : TR || PS और PR तिर्यक रेखा है
∠SPR = ∠PRT (एकान्तर कोण-युग्म है) ……(1)
पुन: TR || PS और QT तिर्यक रेखा है।
∠QPS = ∠PTR (संगत कोण-युग्म है) ……(2)
परन्तु PS, ∠QPR का समद्विभाजक है।
∠QPS = ∠SPR …….(3)
तब, समीकरण (1), (2) व (3) से,
∠PTR = ∠PRT
∆PTR की भुजा PT = PR ……(4)

अब, ∆QTR में, PS || TR
PQPT=QSSR
परन्त समीकरण (4) से, PT = PR
अतः PQPR=QSSR⇒QSSR=PQPR
इति सिद्धम्

प्रश्न 2.
दी गई आकृति में D, ∆ABC के कर्ण AC पर स्थित एक बिन्दु है जबकि BD ⊥ AC, DM ⊥ BC और DN ⊥ AB है। सिद्ध कीजिए कि-
(i) DM2 = DN . MC
(ii) DN2 = DM . AN

हल
दिया है : समकोण ∆ABC में ∠ABC = 90°
BD ⊥ AC, DM ⊥ BC तथा DN ⊥ AB
सिद्ध करना है :
(i) DM2 = DN . MC
(ii) DN2 = DM . AN
उपपत्ति : समकोण ∆ABC में, BD ⊥ AC (दिया है)
∆BDC ~ ∆ABC और ∆ADB ~ ∆ABC
जिससे ∆BDC ~ ∆ADB
तथा ∆BDC और ∆ADB समकोणीय हैं।
(i) समकोण ∆BDC में, DM ⊥ BC (दिया है)
∆DMC ~ ∆BMD
MCDM=DMBM
⇒ DM2 = BM × MC …….(1)
चतुर्भुज BMDN में,
∠B = 90°, ∠M = 90° तथा ∠N = 90°
चतुर्भुज BMDN एक आयत है।
BM = DN ………(2)
तब, समीकरण (1) व (2) से,
DM2 = DN . MC
इति सिद्धम्

(ii) समकोण ∆ADB में, DN ⊥ AB (दिया है)
∆AND और ∆DNB में,
DNBN=ANDN
⇒ DN2 = BN . AN …….(3)
परन्तु, चतुर्भुज BMDN में,
∠B = 90°, ∠M = 90° तथा ∠N = 90°
चतुर्भुज BMDN एक आयत है।
BN = DM ……(4)
तब, समीकरण (3) व (4) से,
DN2 = DM · AN
इति सिद्धम्

प्रश्न 3.
दी गई आकृति में ABC एक त्रिभुज है जिसमें ∠ABC > 90° तथा AD ⊥ CB है। सिद्ध कीजिए कि AC2 = AB2 + BC2 + 2BC . BD है।

हल
दिया है : ∆ABC में, ∠ABC > 90° तथा AD ⊥ CB है।
सिद्ध करना है : AC2 = AB2 + BC2 + 2BC . BD
उपपत्ति : समकोण ∆ABD में,
AB2 = AD2 + BD2 ……(1)
पुनः समकोण ∆ACD में,
AC2 = AD2 + DC2
= AD2 + (BD + BC)2 (∵ DC = BD + BC)
= AD2 + BD2 + BC2 + 2BC . BD [∴ (BD + BC)2 के विस्तार से]
= AB2 + BC2 + 2BC . BD [∴ समीकरण (1) से ]
अतः AC2 = AB2 + BC2 + 2BC . BD
इति सिद्धम्

प्रश्न 4.
दी गई आकृति में ABC एक त्रिभुज है जिसमें ∠ABC < 90° है तथा AD ⊥ BC है। सिद्ध कीजिए कि AC2 = AB2 + BC2 – 2BC . BD है।

हल
दिया है : ∠B < 90° तथा AD ⊥ BC
सिद्ध करना है : AC2 = AB2 + BC2 – 2BC . BD
उपपत्ति : AD ⊥ BC
∆ABD तथा ∆ACD समकोणीय त्रिभुज हैं।
तब, समकोण त्रिभुज ABD में,
AB2 = AD2 + BD2 ……(1)
और समकोण त्रिभुज ACD में,
AC2 = AD2 + DC2 …….(2)
समीकरण (2) में से समीकरण (1) को घटाने पर,
AC2 – AB2 = DC2 – BD2
⇒ AC2 – AB2 = (DC + BD) (DC – BD) (∵ (a + b) (a – b) = a2 – b2)
⇒ AC2 – AB2 = BC(DC – BD) (∵ DC + BD = BC)
⇒ AC2 – AB2 = BC(BC – BD – BD) (∵ DC = BC – BD)
⇒ AC2 – AB2 = BC (BC – 2BD)
⇒ AC2 – AB2 = BC2 – 2BC × BD
अत: AC2 = AB2 + BC2 – 2BC . BD
इति सिद्धम्

प्रश्न 5.
दी गई आकृति में AD त्रिभुज ABC की एक माध्यिका है तथा AM ⊥ BC है। सिद्ध कीजिए कि-

हल
दिया है : ABC एक त्रिभुज है जिसमें D, भुजा BC का मध्य-बिन्दु AM, BC पर लम्ब खींचा गया है और AC > AB
सिद्ध करना है :

उपपत्ति : (i) समकोण ∆AMD में, AM2 + DM2 = AD2 …..(1)
समकोण ∆AMC में,
AC2 = AM2 + MC2
= (AD2 – DM2) + MC2 [समीकरण (1) से AM2 = AD2 – DM2]
= AD2 – DM2 + (DM + DC)2 [∵ MC = DM + DC]
= AD2 – DM2 + DM2 + 2DM . DC + DC2
= AD2 + 2 DM . DC + (12 BC)2 [∵ D, BC मध्य-बिन्दु है]
= AD2 + (2DC). DM + 14 BC2 [∵ 2DC = BC]
अत: AC2 = AD2 + BC . DM + (BC2)2 ……(2)
इति सिद्धम्

(ii) समकोण ∆AMB में,
AB2 = AM2 + BM2
= (AD2 – DM2) + BM2
= AD2 – DM2 + (BD – DM)2
= AD2 – DM2 + BD2 – 2BD . DM + DM2 [∵ (a – b)2 = a2 – 2ab + b2]
= AD2 – 2BD . DM + BD2
= AD2 – BC . DM + (12BC)2 [∵ D, BC का मध्य-बिन्दु है।]
AB2 = AD2 – BC . DM + 14 BC2 …….(3)
अत: AB2 = AD2 – BC . DM + (BC2)2
इति सिद्धम्

(iii) खण्ड (i) व खण्ड (ii) के परिणामों का योग करने पर,
AB2 + AC2 = 2AD2 + 2 . 14 BC2 = 2AD2 + 12 BC2
अत: AB2 + AC2 = 2AD2 + 12 BC2
इति सिद्धम्

प्रश्न 6.
सिद्ध कीजिए कि एक समान्तर चतुर्भुज के विकर्णों के वर्गों का योग उसकी भुजाओं के वर्गों के योग के बराबर होता है।

हल
दिया है : ABCD एक समान्तर चतुर्भुज है जिसके विकर्ण AC और BD परस्पर बिन्दु O पर काटते हैं।
सिद्ध करना है : AC2 + BD2 = AB2 + BC2 + CD2 + DA2
रचना : A से BD पर AE C से BD पर CF लम्ब खींचा।
उपपत्ति: ABCD एक समान्तर चतुर्भुज है और AC तथा BD उसके विकर्ण हैं जो परस्पर O पर काटते हैं।
∴ AO = OC, OB = OD तथा AB = CD
तब, समकोण ∆ABE में,

प्रश्न 7.
दी गई आकृति में एक वृत्त की दो जीवाएँ AB और CD परस्पर बिन्द P पर प्रतिच्छेद करती हैं। सिद्ध कीजिए कि
(i) ∆APC ~ ∆DPB
(ii) AP . PB = CP . DP

हल
दिया है : एक वृत्त की AB व CD दो जीवाएँ हैं जो एक-दूसरे को बिन्दु P पर प्रतिच्छेद करती हैं।
सिद्ध करना है :
(i) ∆APC ~ ∆DPB
(ii) AP . PB = CP . DP
रचना : रेखाखण्ड AD व CB खींचे।
उपपत्ति : (i) जीवा AB और CD परस्पर P पर काटती हैं।
शीर्षाभिमुख कोण ∠APC = ∠BPD
∠CAP = ∠BDP (एक ही वृत्तखण्ड के कोण हैं)
और ∠ACP = ∠DBP (एक ही वृत्तखण्ड के कोण हैं)

अब, ∆APC और ∆BPD में,
∠APC = ∠BPD
∠CAP = ∠BDP
∠ACP = ∠DBP
दो त्रिभुजों की समरूपता की कसौटी AAA से,
∆APC ~ ∆DPB
इति सिद्धम्
(ii) ∆APC और ∆DPB में,
APDP=CPPB
अत: AP . PB = CP . DP
इति सिद्धम्

प्रश्न 8.
दी गई आकृति में एक वृत्त की दो जीवाएँ AB और CD बढ़ाने पर परस्पर बिन्दु P पर प्रतिच्छेद करती हैं। सिद्ध कीजिए कि
(i) ∆PAC ~ ∆PDB
(ii) PA . PB = PC . PD

हल
दिया है : AB और CD एक वृत्त की दो जीवाएँ हैं जो बढ़ाने पर एक-दूसरे को वृत्त के बाहर बिन्दु P पर प्रतिच्छेद करती हैं।
सिद्ध करना है :
(i) ∆PAC ~ ∆PDB
(ii) PA . PB = PC . PD
रचना : रेखाखण्ड AC व BD को मिलाया।
उपपत्ति : (i) चतुर्भुज ABCD एक चक्रीय चतुर्भुज है और ∠PAC उसका बहिष्कोण है।
∠PAC = ∠BDC
⇒ ∠PAC = ∠BDP
इसी प्रकार, ∠PCA, चक्रीय चतुर्भुज ABCD का बहिष्कोण है।
∠PCA = ∠ABD
∠PCA = ∠PBD …..(2)
अब, ∆PAC और ∆PBD में,
∠CPA = ∠BPD (दोनों त्रिभुजों का उभयनिष्ठ कोण है)
∠PAC = ∠BDP [समीकरण (1) से]
∠PCA = ∠PBD [समीकरण (2) से]
दो त्रिभजों की समरूपता के गुणधर्म AAA से,
∆PAC ~ ∆PDB
इति सिद्धम्
(ii) ∵ ∆PAC ~ ∆PDB
PAPD=PCPB
⇒ PA . PB = PC . PD
इति सिद्धम्

प्रश्न 9.
दी गई आकृति में त्रिभुज ABC की भुजा BC पर एक बिन्दु D इस प्रकार स्थित है कि BDCD=ABAC है। सिद्ध कीजिए कि AD, कोण BAC का समद्विभाजक है।

हल
दिया है : ∆ABC की भुजा BC पर एक बिन्दु D ऐसा है कि BDCD=ABAC
सिद्ध करना है : AD, ∠BAC का समद्विभाजक है।
रचना : BA को उसकी सीध में E तक इतना बढ़ाया कि AE = AC हो। रेखाखण्ड CE खींचा।
उपपत्ति: दिया है,
BDCD=ABAC
∵ AC = AE ⇒ BDCD=ABAE
तब, ∆BEC में, BDCD=ABAE
अनुपातिकता के मूलभूत प्रमेय के विलोम से, AD || EC
AD || EC और BE तिर्यक रेखा है।
∠BAD = ∠AEC ……(1)
AD || EC और AC तिर्यक रेखा है।
∠CAD = ∠ACE ……(2)

परन्तु ∆ACE में रचना से, AC = AE
∠AEC = ∠ACE …….(3)
तब समीकरण (1), (2) व (3) से,
∠BAD = ∠CAD
परन्तु ∠BAD + ∠CAD = ∠BAC
अत: AD, ∠BAC का समद्विभाजक है।
इति सिद्धम्

प्रश्न 10.
नाज़िमा एक नदी की धारा में मछलियाँ पकड़ रही है। उसकी मछली पकड़ने वाली छड़ का सिरा पानी की सतह से 1.8 m ऊपर है तथा डोरी के निचले सिरे से लगा काँटा पानी की सतह पर इस प्रकार स्थित है कि उसकी नाज़िमा से दूरी 3.6 m है और छड़ के सिरे के ठीक नीचे पानी की सतह पर स्थित बिन्दु से उसकी दूरी 2.4 m है। यह मानते हुए कि उसकी डोरी (उसकी छड़ के सिरे से काँटे तक) तनी हुई है, उसने कितनी डोरी बाहर निकाली हुई है? यदि वह डोरी को 5 cm/s की दर से अन्दर खींचे तो 12 सेकण्ड के बाद नाज़िमा की काँटे से क्षैतिज दूरी कितनी होगी?

हल
चित्र में, नाजिमा की मछली पकड़ने वाली छड़ का सिरा A पानी की सतह से 1.8 m ऊँचाई पर है जिससे AC = 1.8 m है।
डोरी AB के सिरे B पर एक काँटा है जिसकी बिन्दु C से दूरी BC = 2.4 m है और नाजिमा से B की दूरी BD = 3.6 m है।
CD = BD – BC = 3.6 – 2.4 = 1.2 m
माना डोरी की लम्बाई AB है।

तब समकोण ∆ABC में,
AB2 = BC2 + CA2
⇒ AB2 = (2.4)2 + (1.8)2 = 5.76 + 3.24 = 9.0
⇒ AB = √9.00 = 3 m
अतः डोरी की लम्बाई = 3 m
जब वह डोरी को 5 cm/s की दर से अन्दर खींच रही है तो 12 सेकण्ड में खींची दूरी = 5 × 12 = 60 cm = 0.6 m
तब पानी के बाहर डोरी की लम्बाई AP = 3.6 – 0.6 = 2.4 m
तब काँटे से छड़ के सिरे A के ठीक नीचे बिन्दु C की क्षैतिज दूरी PC होगी।
समकोण ∆APC में,
PC2 + AC2 = AP2
PC2 + (1.8)2 = (2.4)2
PC2 + 3.24 = 5.76
PC2 = 5.76 – 3.24 = 2.52
PC = √2.52 = 1.587 m = 1.59 मीटर (लगभग)
काँटे से नाज़िमा की क्षैतिज दूरी PD = PC + CD = (1.59) + (1.2) cm = 2.79 m
अत: काँटे से नाज़िमा की क्षैतिज दूरी = 2.79 m

You must watch….

Chapter 1 वास्तविक संख्याएँ

Chapter 1 वास्तविक संख्याएँ Ex 1.1
Chapter 1 वास्तविक संख्याएँ Ex 1.2
Chapter 1 वास्तविक संख्याएँ Ex 1.3
Chapter 1 वास्तविक संख्याएँ Ex 1.4
Chapter 1 वास्तविक संख्याएँ Additional Questions

Chapter 2 बहुपद

Chapter 2 बहुपद Ex 2.1
Chapter 2 बहुपद Ex 2.2
Chapter 2 बहुपद Ex 2.3
Chapter 2 बहुपद Ex 2.4
Chapter 2 बहुपद Additional Questions

Chapter 3 दो चरों वाले रैखिक समीकरण युग्म

Chapter 3 दो चरों वाले रैखिक समीकरण युग्म Ex 3.1
Chapter 3 दो चरों वाले रैखिक समीकरण युग्म Ex 3.2
Chapter 3 दो चरों वाले रैखिक समीकरण युग्म Ex 3.3
Chapter 3 दो चरों वाले रैखिक समीकरण युग्म Ex 3.4
Chapter 3 दो चरों वाले रैखिक समीकरण युग्म Ex 3.5
Chapter 3 दो चरों वाले रैखिक समीकरण युग्म Ex 3.6
Chapter 3 दो चरों वाले रैखिक समीकरण युग्म Ex 3.7
Chapter 3 दो चरों वाले रैखिक समीकरण युग्म Additional Questions

Chapter 4 द्विघात समीकरण

Chapter 4 द्विघात समीकरण Ex 4.1
Chapter 4 द्विघात समीकरण Ex 4.2
Chapter 4 द्विघात समीकरण Ex 4.3
Chapter 4 द्विघात समीकरण Ex 4.4
Chapter 4 द्विघात समीकरण Additional Questions

Chapter 5 समांतर श्रेढ़ियाँ

Chapter 5 समांतर श्रेढ़ियाँ Ex 5.1
Chapter 5 समांतर श्रेढ़ियाँ Ex 5.2
Chapter 5 समांतर श्रेढ़ियाँ Ex 5.3
Chapter 5 समांतर श्रेढ़ियाँ Ex 5.4
Chapter 5 समान्तर श्रेढ़ियाँ Additional Questions

Chapter 6 त्रिभुज

Chapter 6 त्रिभुज Ex 6.1
Chapter 6 त्रिभुज Ex 6.2
Chapter 6 त्रिभुज Ex 6.3
Chapter 6 त्रिभुज Ex 6.4
Chapter 6 त्रिभुज Ex 6.5
Chapter 6 त्रिभुज Additional Questions

Chapter 7 निर्देशांक ज्यामिति

Chapter 7 निर्देशांक ज्यामिति Ex 7.1
Chapter 7 निर्देशांक ज्यामिति Ex 7.2
Chapter 7 निर्देशांक ज्यामिति Ex 7.3
Chapter 7 निर्देशांक ज्यामिति Ex 7.4
Chapter 7 निर्देशांक ज्यामिति Additional Questions

Chapter 8 त्रिकोणमिति का परिचय

Chapter 8 त्रिकोणमिति का परिचय Ex 8.1
Chapter 8 त्रिकोणमिति का परिचय Ex 8.2
Chapter 8 त्रिकोणमिति का परिचय Ex 8.3
Chapter 8 त्रिकोणमिति का परिचय Ex 8.4
Chapter 8 त्रिकोणमिति का परिचय Additional Questions

Chapter 9 त्रिकोणमिति के कुछ अनुप्रयोग

Chapter 9 त्रिकोणमिति के कुछ अनुप्रयोग Ex 9.1
Chapter 9 त्रिकोणमिति के कुछ अनुप्रयोग Additional Questions

Chapter 10 वृत्त

Chapter 10 वृत्त Ex 10.1
Chapter 10 वृत्त Ex 10.2
Chapter 10 वृत्त Additional Questions

Chapter 11 रचनाएँ

Chapter 11 रचनाएँ Ex 11.1
Chapter 11 रचनाएँ Ex 11.2
Chapter 11 रचनाएँ Additional Questions

Chapter 12 वृतों से संबंधित क्षेत्रफल

Chapter 12 वृतों से संबंधित क्षेत्रफल Ex 12.1
Chapter 12 वृतों से संबंधित क्षेत्रफल Ex 12.2
Chapter 12 वृतों से संबंधित क्षेत्रफल Ex 12.3
Chapter 12 वृतों से संबंधित क्षेत्रफल Additional Questions

Chapter 13 पृष्ठीय क्षेत्रफल एवं आयतन

Chapter 13 पृष्ठीय क्षेत्रफल एवं आयतन Ex 13.1
Chapter 13 पृष्ठीय क्षेत्रफल एवं आयतन Ex 13.2
Chapter 13 पृष्ठीय क्षेत्रफल एवं आयतन Ex 13.3
Chapter 13 पृष्ठीय क्षेत्रफल एवं आयतन Ex 13.4
Chapter 13 पृष्ठीय क्षेत्रफल एवं आयतन Ex 13.5
Chapter 13 पृष्ठीय क्षेत्रफल एवं आयतन Additional Questions

Chapter 14 सांख्यिकी

Chapter 14 सांख्यिकी Ex 14.1
Chapter 14 सांख्यिकी Ex 14.2
Chapter 14 सांख्यिकी Ex 14.3
Chapter 14 सांख्यिकी Ex 14.4
Chapter 14 सांख्यिकी Additional Questions

Chapter 15 प्रायिकता

Chapter 15 प्रायिकता Ex 15.1
Chapter 15 प्रायिकता Ex 15.2
Chapter 15 प्रायिकता Additional Questions

Leave a Comment

Your email address will not be published. Required fields are marked *