त्रिकोणमिति का परिचय
प्रश्न 1.
ΔABC में, जिसका कोण B समकोण है, AB = 24 सेमी और BC = 7 सेमी है। निम्नलिखित का मान ज्ञात कीजिए-
(i) sin A, cos A
(ii) sin C, cos C
हल
समकोण ΔABC में ∠B = 90°
तब पाइथागोरस प्रमेय से,
AC2 = AB2 + BC2
AC2 = (24)2 + (7)2 = 576 + 49 = 625
AC = √625 = 25 सेमी
प्रश्न 2.
आकृति में, tan P – cot R का मान ज्ञात कीजिए।
हल
समकोण ΔPQR में,
पाइथागोरस प्रमेय से,
PQ2 + QR2 = PR2
⇒ (12)2 + QR2 = (13)2
⇒ QR2 = (13)2 – (12)2 = 169 – 144 = 25
⇒ QR = 5 सेमी
प्रश्न 3.
यदि sin A = 34, तो cos A और tan A का मान परिकलित कीजिए।
हल
दिया है, किसी समकोण त्रिभुज में, sin A = 34
प्रश्न 4.
यदि 15 cot A = 8 हो, तो sin A और sec A का मान ज्ञात कीजिए।
हल
प्रश्न 5.
यदि sec θ = 1312 हो तो अन्य सभी त्रिकोणमितीय अनुपात परिकलित कीजिए।
हल
प्रश्न 6.
यदि ∠A तथा ∠B न्यूनकोण हों और cos A = cos B हो, तो दिखाइए कि: ∠A = ∠B
हल
माना त्रिभुज ABC में ∠C समकोण है।
दिया है, ∠A तथा ∠B न्यूनकोण हैं।
प्रश्न 7.
यदि cot θ = 78, तो (i) (1+sinθ)(1−sinθ)(1+cosθ)(1−cosθ), (ii) cot2θ का मान निकालिए।
हल
प्रश्न 8.
यदि 3 cot A = 4, तो जाँच कीजिए कि 1−tan2A1+tan2A = cos2 A – sin2 A है या नही।
हल
प्रश्न 9.
त्रिभुज ABC में, जिसका कोण B समकोण है, यदि tan A = 13√, तो निम्नलिखित के मान ज्ञात कीजिए :
(i) sin A cos C + cos A sin C
(ii) cos A cos C – sin A sin C
हल
प्रश्न 10.
ΔPQR में, जिसका कोण Q समकोण है, PR + QR = 25 सेमी और PQ = 5 सेमी है। sin P, cos P और tan P के मान ज्ञात कीजिए।
हल
दिया है, समकोण ΔPQR में, ∠Q = 90°
पाइथागोरस प्रमेय से,
PQ2 + QR2 = PR2
⇒ (5)2 + QR2 = PR2
⇒ 25 = PR2 – QR2
⇒ 25 = (PR + QR) (PR – QR) [∵ a2 – b2 = (a + b)(a – b)]
⇒ 25 = 25 (PR – QR) (∵ PR + QR = 25, दिया है)
⇒ PR – QR = 1 ……..(1)
और PR + QR = 25 ……(2)
समीकरण (1) व (2) को हल करने पर,
PR = 13 सेमी तथा QR = 12 सेमी
समकोण ΔPQR में,
प्रश्न 11.
बताइए कि निम्नलिखित कथन सत्य हैं या असत्या कारण सहित अपने उत्तर की पुष्टि कीजिए।
(i) tan A का मान सदैव 1 से कम होता है।
(ii) कोण A के किसी मान के लिए sec A = 125
(iii) cos A, कोण A के cosecant के लिए प्रयुक्त एक संक्षिप्त रूप है।
(iv) cot A, cot और A का गुणनफल होता है।
(v) किसी भी कोण θ के लिए sin θ = 43
हल
tan A का मान 1 से कम तभी हो सकता है जब ∠A की सम्मुख भुजा, ∠A की आधार भुजा से छोटी हो।
परन्तु ऐसा सदैव होना आवश्यक नहीं है।
अत: कथन “tan A का मान सदैव 1 से कम होता है” असत्य है।
जिसका आशय है कि किसी ∠A के लिए समकोण त्रिभुज के कर्ण और ∠A के आधार का अनुपात 12 : 5 होता है।
परन्तु ऐसा सदैव होना आवश्यक नहीं है।
अत: कथन “कोण A के किसी मान के लिए sec A = 125” असत्य है।
(iii) हम जानते हैं कि cos A, कोण A की cosine का संक्षिप्त रूप होता है जबकि cosecant A का अर्थ है cosec A
अतः दिया हुआ कथन असत्य है।
(iv) cot A का अर्थ ∠A के cotangent से है।
स्वतन्त्र रूप में cot का कोई अस्तित्व ही नहीं है। अत cot A, और cot A का गुणनफल कभी नहीं है।
अत: दिया हुआ कथन असत्य है।
(v) किसी समकोण त्रिभुज में कोण θ के लिए,
यदि sin θ = 43 तो इसका अर्थ है कि θ की सम्मुख भुजा और कर्ण का अनुपात 4 : 3 है।
परन्तु कर्ण, समकोण त्रिभुज की सबसे बड़ी भुजा होती है।
अतः दिया गया कथन असत्य है।
You must watch….
Chapter 1 वास्तविक संख्याएँ
Chapter 1 वास्तविक संख्याएँ Ex 1.1
Chapter 1 वास्तविक संख्याएँ Ex 1.2
Chapter 1 वास्तविक संख्याएँ Ex 1.3
Chapter 1 वास्तविक संख्याएँ Ex 1.4
Chapter 1 वास्तविक संख्याएँ Additional Questions
Chapter 2 बहुपद
Chapter 2 बहुपद Ex 2.1
Chapter 2 बहुपद Ex 2.2
Chapter 2 बहुपद Ex 2.3
Chapter 2 बहुपद Ex 2.4
Chapter 2 बहुपद Additional Questions
Chapter 3 दो चरों वाले रैखिक समीकरण युग्म
Chapter 3 दो चरों वाले रैखिक समीकरण युग्म Ex 3.1
Chapter 3 दो चरों वाले रैखिक समीकरण युग्म Ex 3.2
Chapter 3 दो चरों वाले रैखिक समीकरण युग्म Ex 3.3
Chapter 3 दो चरों वाले रैखिक समीकरण युग्म Ex 3.4
Chapter 3 दो चरों वाले रैखिक समीकरण युग्म Ex 3.5
Chapter 3 दो चरों वाले रैखिक समीकरण युग्म Ex 3.6
Chapter 3 दो चरों वाले रैखिक समीकरण युग्म Ex 3.7
Chapter 3 दो चरों वाले रैखिक समीकरण युग्म Additional Questions
Chapter 4 द्विघात समीकरण
Chapter 4 द्विघात समीकरण Ex 4.1
Chapter 4 द्विघात समीकरण Ex 4.2
Chapter 4 द्विघात समीकरण Ex 4.3
Chapter 4 द्विघात समीकरण Ex 4.4
Chapter 4 द्विघात समीकरण Additional Questions
Chapter 5 समांतर श्रेढ़ियाँ
Chapter 5 समांतर श्रेढ़ियाँ Ex 5.1
Chapter 5 समांतर श्रेढ़ियाँ Ex 5.2
Chapter 5 समांतर श्रेढ़ियाँ Ex 5.3
Chapter 5 समांतर श्रेढ़ियाँ Ex 5.4
Chapter 5 समान्तर श्रेढ़ियाँ Additional Questions
Chapter 6 त्रिभुज
Chapter 6 त्रिभुज Ex 6.1
Chapter 6 त्रिभुज Ex 6.2
Chapter 6 त्रिभुज Ex 6.3
Chapter 6 त्रिभुज Ex 6.4
Chapter 6 त्रिभुज Ex 6.5
Chapter 6 त्रिभुज Ex 6.6
Chapter 6 त्रिभुज Additional Questions
Chapter 7 निर्देशांक ज्यामिति
Chapter 7 निर्देशांक ज्यामिति Ex 7.1
Chapter 7 निर्देशांक ज्यामिति Ex 7.2
Chapter 7 निर्देशांक ज्यामिति Ex 7.3
Chapter 7 निर्देशांक ज्यामिति Ex 7.4
Chapter 7 निर्देशांक ज्यामिति Additional Questions
Chapter 8 त्रिकोणमिति का परिचय
Chapter 8 त्रिकोणमिति का परिचय Ex 8.2
Chapter 8 त्रिकोणमिति का परिचय Ex 8.3
Chapter 8 त्रिकोणमिति का परिचय Ex 8.4
Chapter 8 त्रिकोणमिति का परिचय Additional Questions
Chapter 9 त्रिकोणमिति के कुछ अनुप्रयोग
Chapter 9 त्रिकोणमिति के कुछ अनुप्रयोग Ex 9.1
Chapter 9 त्रिकोणमिति के कुछ अनुप्रयोग Additional Questions
Chapter 10 वृत्त
Chapter 10 वृत्त Ex 10.1
Chapter 10 वृत्त Ex 10.2
Chapter 10 वृत्त Additional Questions
Chapter 11 रचनाएँ
Chapter 11 रचनाएँ Ex 11.1
Chapter 11 रचनाएँ Ex 11.2
Chapter 11 रचनाएँ Additional Questions
Chapter 12 वृतों से संबंधित क्षेत्रफल
Chapter 12 वृतों से संबंधित क्षेत्रफल Ex 12.1
Chapter 12 वृतों से संबंधित क्षेत्रफल Ex 12.2
Chapter 12 वृतों से संबंधित क्षेत्रफल Ex 12.3
Chapter 12 वृतों से संबंधित क्षेत्रफल Additional Questions
Chapter 13 पृष्ठीय क्षेत्रफल एवं आयतन
Chapter 13 पृष्ठीय क्षेत्रफल एवं आयतन Ex 13.1
Chapter 13 पृष्ठीय क्षेत्रफल एवं आयतन Ex 13.2
Chapter 13 पृष्ठीय क्षेत्रफल एवं आयतन Ex 13.3
Chapter 13 पृष्ठीय क्षेत्रफल एवं आयतन Ex 13.4
Chapter 13 पृष्ठीय क्षेत्रफल एवं आयतन Ex 13.5
Chapter 13 पृष्ठीय क्षेत्रफल एवं आयतन Additional Questions
Chapter 14 सांख्यिकी
Chapter 14 सांख्यिकी Ex 14.1
Chapter 14 सांख्यिकी Ex 14.2
Chapter 14 सांख्यिकी Ex 14.3
Chapter 14 सांख्यिकी Ex 14.4
Chapter 14 सांख्यिकी Additional Questions
Chapter 15 प्रायिकता
Chapter 15 प्रायिकता Ex 15.1
Chapter 15 प्रायिकता Ex 15.2
Chapter 15 प्रायिकता Additional Questions